Boosting predictive models and augmenting patient data with relevant genomic and pathway information
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00137106" target="_blank" >RIV/00216224:14330/24:00137106 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0010482524004827" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010482524004827</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compbiomed.2024.108398" target="_blank" >10.1016/j.compbiomed.2024.108398</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boosting predictive models and augmenting patient data with relevant genomic and pathway information
Popis výsledku v původním jazyce
The recurrence of low-stage lung cancer poses a challenge due to its unpredictable nature and diverse patient responses to treatments. Personalized care and patient outcomes heavily rely on early relapse identification, yet current predictive models, despite their potential, lack comprehensive genetic data. This inadequacy fuels our research focus—integrating specific genetic information, such as pathway scores, into clinical data. Our aim is to refine machine learning models for more precise relapse prediction in early-stage non-small cell lung cancer. To address the scarcity of genetic data, we employ imputation techniques, leveraging publicly available datasets such as The Cancer Genome Atlas (TCGA), integrating pathway scores into our patient cohort from the Cancer Long Survivor Artificial Intelligence Follow-up (CLARIFY) project. Through the integration of imputed pathway scores from the TCGA dataset with clinical data, our approach achieves notable strides in predicting relapse among a held-out test set of 200 patients. By training machine learning models on enriched knowledge graph data, inclusive of triples derived from pathway score imputation, we achieve a promising precision of 82% and specificity of 91%. These outcomes highlight the potential of our models as supplementary tools within tumour, node, and metastasis (TNM) classification systems, offering improved prognostic capabilities for lung cancer patients. In summary, our research underscores the significance of refining machine learning models for relapse prediction in early-stage non-small cell lung cancer. Our approach, centered on imputing pathway scores and integrating them with clinical data, not only enhances predictive performance but also demonstrates the promising role of machine learning in anticipating relapse and ultimately elevating patient outcomes.
Název v anglickém jazyce
Boosting predictive models and augmenting patient data with relevant genomic and pathway information
Popis výsledku anglicky
The recurrence of low-stage lung cancer poses a challenge due to its unpredictable nature and diverse patient responses to treatments. Personalized care and patient outcomes heavily rely on early relapse identification, yet current predictive models, despite their potential, lack comprehensive genetic data. This inadequacy fuels our research focus—integrating specific genetic information, such as pathway scores, into clinical data. Our aim is to refine machine learning models for more precise relapse prediction in early-stage non-small cell lung cancer. To address the scarcity of genetic data, we employ imputation techniques, leveraging publicly available datasets such as The Cancer Genome Atlas (TCGA), integrating pathway scores into our patient cohort from the Cancer Long Survivor Artificial Intelligence Follow-up (CLARIFY) project. Through the integration of imputed pathway scores from the TCGA dataset with clinical data, our approach achieves notable strides in predicting relapse among a held-out test set of 200 patients. By training machine learning models on enriched knowledge graph data, inclusive of triples derived from pathway score imputation, we achieve a promising precision of 82% and specificity of 91%. These outcomes highlight the potential of our models as supplementary tools within tumour, node, and metastasis (TNM) classification systems, offering improved prognostic capabilities for lung cancer patients. In summary, our research underscores the significance of refining machine learning models for relapse prediction in early-stage non-small cell lung cancer. Our approach, centered on imputing pathway scores and integrating them with clinical data, not only enhances predictive performance but also demonstrates the promising role of machine learning in anticipating relapse and ultimately elevating patient outcomes.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers in Biology and Medicine
ISSN
0010-4825
e-ISSN
—
Svazek periodika
174
Číslo periodika v rámci svazku
108398
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85189940313