Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139112" target="_blank" >RIV/00216224:14330/24:00139112 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2024.40" target="_blank" >http://dx.doi.org/10.4230/LIPIcs.ISAAC.2024.40</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.ISAAC.2024.40" target="_blank" >10.4230/LIPIcs.ISAAC.2024.40</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)
Popis výsledku v původním jazyce
Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete since the 1980s, and fairly involved techniques were already required to show its fixed-parameter tractability when parameterized by the vertex cover number. In this paper we prove that computing exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, for simple graphs of path-width 13 and tree-width 9). Thus, while tree-width and path-width have been very successful tools in many graph algorithm scenarios, our result shows that general crossing number computations unlikely (under P≠ NP) could be successfully tackled using graph decompositions of bounded width, what has been a "tantalizing open problem" [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.
Název v anglickém jazyce
Crossing Number Is NP-Hard for Constant Path-Width (And Tree-Width)
Popis výsledku anglicky
Crossing Number is a celebrated problem in graph drawing. It is known to be NP-complete since the 1980s, and fairly involved techniques were already required to show its fixed-parameter tractability when parameterized by the vertex cover number. In this paper we prove that computing exactly the crossing number is NP-hard even for graphs of path-width 12 (and as a result, for simple graphs of path-width 13 and tree-width 9). Thus, while tree-width and path-width have been very successful tools in many graph algorithm scenarios, our result shows that general crossing number computations unlikely (under P≠ NP) could be successfully tackled using graph decompositions of bounded width, what has been a "tantalizing open problem" [S. Cabello, Hardness of Approximation for Crossing Number, 2013] till now.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
35th International Symposium on Algorithms and Computation (ISAAC 2024)
ISBN
9783959773546
ISSN
1868-8969
e-ISSN
—
Počet stran výsledku
15
Strana od-do
„40:1“-„40:15“
Název nakladatele
Schloss Dagstuhl -- Leibniz-Zentrum f{"u}r Informatik
Místo vydání
Dagstuhl, Germany
Místo konání akce
Sydney, Australia
Datum konání akce
8. 12. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—