Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Solving Long-run Average Reward Robust MDPs via Stochastic Games

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139771" target="_blank" >RIV/00216224:14330/24:00139771 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.24963/ijcai.2024/741" target="_blank" >http://dx.doi.org/10.24963/ijcai.2024/741</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.24963/ijcai.2024/741" target="_blank" >10.24963/ijcai.2024/741</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Solving Long-run Average Reward Robust MDPs via Stochastic Games

  • Popis výsledku v původním jazyce

    Markov decision processes (MDPs) provide a standard framework for sequential decision making under uncertainty. However, MDPs do not take uncertainty in transition probabilities into account. Robust Markov decision processes (RMDPs) address this shortcoming of MDPs by assigning to each transition an uncertainty set rather than a single probability value. In this work, we consider polytopic RMDPs in which all uncertainty sets are polytopes and study the problem of solving long-run average reward polytopic RMDPs. We present a novel perspective on this problem and show that it can be reduced to solving long-run average reward turn-based stochastic games with finite state and action spaces. This reduction allows us to derive several important consequences that were hitherto not known to hold for polytopic RMDPs. First, we derive new computational complexity bounds for solving long-run average reward polytopic RMDPs, showing for the first time that the threshold decision problem for them is in NP and coNP and that they admit a randomized algorithm with sub-exponential expected runtime. Second, we present Robust Polytopic Policy Iteration (RPPI), a novel policy iteration algorithm for solving long-run average reward polytopic RMDPs. Our experimental evaluation shows that RPPI is much more efficient in solving long-run average reward polytopic RMDPs compared to state-of-the-art methods based on value iteration.

  • Název v anglickém jazyce

    Solving Long-run Average Reward Robust MDPs via Stochastic Games

  • Popis výsledku anglicky

    Markov decision processes (MDPs) provide a standard framework for sequential decision making under uncertainty. However, MDPs do not take uncertainty in transition probabilities into account. Robust Markov decision processes (RMDPs) address this shortcoming of MDPs by assigning to each transition an uncertainty set rather than a single probability value. In this work, we consider polytopic RMDPs in which all uncertainty sets are polytopes and study the problem of solving long-run average reward polytopic RMDPs. We present a novel perspective on this problem and show that it can be reduced to solving long-run average reward turn-based stochastic games with finite state and action spaces. This reduction allows us to derive several important consequences that were hitherto not known to hold for polytopic RMDPs. First, we derive new computational complexity bounds for solving long-run average reward polytopic RMDPs, showing for the first time that the threshold decision problem for them is in NP and coNP and that they admit a randomized algorithm with sub-exponential expected runtime. Second, we present Robust Polytopic Policy Iteration (RPPI), a novel policy iteration algorithm for solving long-run average reward polytopic RMDPs. Our experimental evaluation shows that RPPI is much more efficient in solving long-run average reward polytopic RMDPs compared to state-of-the-art methods based on value iteration.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-06963S" target="_blank" >GA23-06963S: VESCAA: Verifikovatelná a efektivní syntéza kontrolerů pro autonomní agenty</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, {IJCAI} 2024, Jeju, South Korea, August 3-9, 2024

  • ISBN

    9781956792041

  • ISSN

    1045-0823

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

    6707-6715

  • Název nakladatele

    ijcai.org

  • Místo vydání

    Neuveden

  • Místo konání akce

    Jeju

  • Datum konání akce

    1. 1. 2024

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    001347142806093