Solving Long-run Average Reward Robust MDPs via Stochastic Games
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F24%3A00139771" target="_blank" >RIV/00216224:14330/24:00139771 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.24963/ijcai.2024/741" target="_blank" >http://dx.doi.org/10.24963/ijcai.2024/741</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24963/ijcai.2024/741" target="_blank" >10.24963/ijcai.2024/741</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Solving Long-run Average Reward Robust MDPs via Stochastic Games
Popis výsledku v původním jazyce
Markov decision processes (MDPs) provide a standard framework for sequential decision making under uncertainty. However, MDPs do not take uncertainty in transition probabilities into account. Robust Markov decision processes (RMDPs) address this shortcoming of MDPs by assigning to each transition an uncertainty set rather than a single probability value. In this work, we consider polytopic RMDPs in which all uncertainty sets are polytopes and study the problem of solving long-run average reward polytopic RMDPs. We present a novel perspective on this problem and show that it can be reduced to solving long-run average reward turn-based stochastic games with finite state and action spaces. This reduction allows us to derive several important consequences that were hitherto not known to hold for polytopic RMDPs. First, we derive new computational complexity bounds for solving long-run average reward polytopic RMDPs, showing for the first time that the threshold decision problem for them is in NP and coNP and that they admit a randomized algorithm with sub-exponential expected runtime. Second, we present Robust Polytopic Policy Iteration (RPPI), a novel policy iteration algorithm for solving long-run average reward polytopic RMDPs. Our experimental evaluation shows that RPPI is much more efficient in solving long-run average reward polytopic RMDPs compared to state-of-the-art methods based on value iteration.
Název v anglickém jazyce
Solving Long-run Average Reward Robust MDPs via Stochastic Games
Popis výsledku anglicky
Markov decision processes (MDPs) provide a standard framework for sequential decision making under uncertainty. However, MDPs do not take uncertainty in transition probabilities into account. Robust Markov decision processes (RMDPs) address this shortcoming of MDPs by assigning to each transition an uncertainty set rather than a single probability value. In this work, we consider polytopic RMDPs in which all uncertainty sets are polytopes and study the problem of solving long-run average reward polytopic RMDPs. We present a novel perspective on this problem and show that it can be reduced to solving long-run average reward turn-based stochastic games with finite state and action spaces. This reduction allows us to derive several important consequences that were hitherto not known to hold for polytopic RMDPs. First, we derive new computational complexity bounds for solving long-run average reward polytopic RMDPs, showing for the first time that the threshold decision problem for them is in NP and coNP and that they admit a randomized algorithm with sub-exponential expected runtime. Second, we present Robust Polytopic Policy Iteration (RPPI), a novel policy iteration algorithm for solving long-run average reward polytopic RMDPs. Our experimental evaluation shows that RPPI is much more efficient in solving long-run average reward polytopic RMDPs compared to state-of-the-art methods based on value iteration.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06963S" target="_blank" >GA23-06963S: VESCAA: Verifikovatelná a efektivní syntéza kontrolerů pro autonomní agenty</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, {IJCAI} 2024, Jeju, South Korea, August 3-9, 2024
ISBN
9781956792041
ISSN
1045-0823
e-ISSN
—
Počet stran výsledku
9
Strana od-do
6707-6715
Název nakladatele
ijcai.org
Místo vydání
Neuveden
Místo konání akce
Jeju
Datum konání akce
1. 1. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001347142806093