Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Performance analysis of various features and functions settings on the neural network accuracy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14510%2F22%3A00130440" target="_blank" >RIV/00216224:14510/22:00130440 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://conference.fsps.muni.cz/" target="_blank" >https://conference.fsps.muni.cz/</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Performance analysis of various features and functions settings on the neural network accuracy

  • Popis výsledku v původním jazyce

    Artificial intelligence with machine learning (more precisely neural network) is one of the most used types of an algorithm, in sports but also in general. In the past, only wealthier sports clubs could afford to use her potential. With the development of affordable software, the situation changes and every club can use it to their advantage, but there is a problem with how to prepare data and how to set up the algorithm. For these reasons, this study aims to determine whether features or function settings have a greater effect on model accuracy. An initial feature dataset (n = 18,882; 1,929 players, 8 variables) was created from publicly available sources. Each of the 6 feature settings consisted of 96 independent models. A total of 384 models were created, in which their accuracy (in the training and testing phases) and the percentage difference between the training and testing phases were further analysed. No statistically significant differences were found between the accuracy of the function’s settings, but statistically significant differences were confirmed between the features settings, of which14 models with 100% accuracy and 1.00 AUC. From this study, it is clear that feature settings, especially the reduction of the number of outputs, are a more important factor in increasing the accuracy of the artificial intelligence model and that variables Weight, Height, and Age had the highest frequency of occurrences of normalized importance and can therefore be identified as one of the most important features for prediction of final rank.

  • Název v anglickém jazyce

    Performance analysis of various features and functions settings on the neural network accuracy

  • Popis výsledku anglicky

    Artificial intelligence with machine learning (more precisely neural network) is one of the most used types of an algorithm, in sports but also in general. In the past, only wealthier sports clubs could afford to use her potential. With the development of affordable software, the situation changes and every club can use it to their advantage, but there is a problem with how to prepare data and how to set up the algorithm. For these reasons, this study aims to determine whether features or function settings have a greater effect on model accuracy. An initial feature dataset (n = 18,882; 1,929 players, 8 variables) was created from publicly available sources. Each of the 6 feature settings consisted of 96 independent models. A total of 384 models were created, in which their accuracy (in the training and testing phases) and the percentage difference between the training and testing phases were further analysed. No statistically significant differences were found between the accuracy of the function’s settings, but statistically significant differences were confirmed between the features settings, of which14 models with 100% accuracy and 1.00 AUC. From this study, it is clear that feature settings, especially the reduction of the number of outputs, are a more important factor in increasing the accuracy of the artificial intelligence model and that variables Weight, Height, and Age had the highest frequency of occurrences of normalized importance and can therefore be identified as one of the most important features for prediction of final rank.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    50902 - Social sciences, interdisciplinary

Návaznosti výsledku

  • Projekt

  • Návaznosti

    R - Projekt Ramcoveho programu EK

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů