On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection and Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00364873" target="_blank" >RIV/68407700:21460/23:00364873 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/s23042031" target="_blank" >https://doi.org/10.3390/s23042031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s23042031" target="_blank" >10.3390/s23042031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection and Classification
Popis výsledku v původním jazyce
The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms. 2023 by the authors.
Název v anglickém jazyce
On the Role of Training Data for SVM-Based Microwave Brain Stroke Detection and Classification
Popis výsledku anglicky
The aim of this work was to test microwave brain stroke detection and classification using support vector machines (SVMs). We tested how the nature and variability of training data and system parameters impact the achieved classification accuracy. Using experimentally verified numerical models, a large database of synthetic training and test data was created. The models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head phantoms with virtually inserted strokes of arbitrary size, and different dielectric parameters in different positions. The generated synthetic data sets were used to test four different hypotheses, regarding the appropriate parameters of the training dataset, the appropriate frequency range and the number of frequency points, as well as the level of subject variability to reach the highest SVM classification accuracy. The results indicate that the SVM algorithm is able to detect the presence of the stroke and classify it (i.e., ischemic or hemorrhagic) even when trained with single-frequency data. Moreover, it is shown that data of subjects with smaller strokes appear to be the most suitable for training accurate SVM predictors with high generalization capabilities. Finally, the datasets created for this study are made available to the community for testing and developing their own algorithms. 2023 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20601 - Medical engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-00579S" target="_blank" >GA21-00579S: Multifyzikální studie superpozice elektromagnetických vln v modelu lidské hlavy pro ověření proveditelnosti mikrovlnné hypertermie nádorů mozku</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-8220
e-ISSN
1424-8220
Svazek periodika
23
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
21
Strana od-do
—
Kód UT WoS článku
000942248300001
EID výsledku v databázi Scopus
2-s2.0-85149183784