Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Systematic Optimization of Training and Setting of SVM-Based Microwave Stroke Classification: Numerical Simulations for 10 Port System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F24%3A00375995" target="_blank" >RIV/68407700:21460/24:00375995 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/JERM.2024.3404119" target="_blank" >https://doi.org/10.1109/JERM.2024.3404119</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/JERM.2024.3404119" target="_blank" >10.1109/JERM.2024.3404119</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Systematic Optimization of Training and Setting of SVM-Based Microwave Stroke Classification: Numerical Simulations for 10 Port System

  • Popis výsledku v původním jazyce

    The primary objective of this study is to systematically evaluate the performance of the Support Vector Machine (SVM) algorithm, identifying optimal configurations and appropriate parameters for training and testing data, for microwave brain stroke classification. Using experimentally verified 3D numerical models, a large database of synthetic training and test data has been created with different levels of data variability. These models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head models Within these models, strokes of varying sizes, types, and dielectric parameters are virtually inserted at different positions in brain within the plane of the antennas. Synthetic data sets have been generated to study the impact of reducing training data, data dimensionality, data format, and algorithm settings. The results of this study confirm that Principal Component Analysis (PCA) dimensionality reduction significantly improved the classification accuracy of the SVM algorithm, and datasets of subjects with smaller strokes appeared to be the most suitable for training. Furthermore, datasets that contain the real and imaginary parts of transmission and reflection coefficients result in the highest classification accuracy. For the current antenna array, the best observed setting and scenarios with high variability in training and test data, close to real clinical scenarios, the ability to accurately classify ischemic strokes and suggest safe initiation of thrombotic therapy is approximately 70%.

  • Název v anglickém jazyce

    Systematic Optimization of Training and Setting of SVM-Based Microwave Stroke Classification: Numerical Simulations for 10 Port System

  • Popis výsledku anglicky

    The primary objective of this study is to systematically evaluate the performance of the Support Vector Machine (SVM) algorithm, identifying optimal configurations and appropriate parameters for training and testing data, for microwave brain stroke classification. Using experimentally verified 3D numerical models, a large database of synthetic training and test data has been created with different levels of data variability. These models consist of an antenna array surrounding reconfigurable geometrically and dielectrically realistic human head models Within these models, strokes of varying sizes, types, and dielectric parameters are virtually inserted at different positions in brain within the plane of the antennas. Synthetic data sets have been generated to study the impact of reducing training data, data dimensionality, data format, and algorithm settings. The results of this study confirm that Principal Component Analysis (PCA) dimensionality reduction significantly improved the classification accuracy of the SVM algorithm, and datasets of subjects with smaller strokes appeared to be the most suitable for training. Furthermore, datasets that contain the real and imaginary parts of transmission and reflection coefficients result in the highest classification accuracy. For the current antenna array, the best observed setting and scenarios with high variability in training and test data, close to real clinical scenarios, the ability to accurately classify ischemic strokes and suggest safe initiation of thrombotic therapy is approximately 70%.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20601 - Medical engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology

  • ISSN

    2469-7249

  • e-ISSN

    2469-7257

  • Svazek periodika

    8

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    9

  • Strana od-do

    273-281

  • Kód UT WoS článku

    001242894100001

  • EID výsledku v databázi Scopus

    2-s2.0-85195375631