Řídké odhady parametrů v přeparametrizovaných modelech časových řad
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F06%3A00017505" target="_blank" >RIV/00216224:14560/06:00017505 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sparse Parameter Estimation in Overcomplete Time Series Models
Popis výsledku v původním jazyce
We suggest a new approach to parameter estimation in time series models with large number of parameters. We use a modified version of the Basis Pursuit Algorithm (BPA) by Chen et al [SIAM Review 43 (2001), No. 1] to verify its applicability to times series modeling. For simplicity we restrict to ARIMA models of univariate stationary time series. After having accomplished and analyzed a lot of numerical simulations we can draw the following conclusions: (1) We were able to reliably identify nearly zero parameters in the model allowing us to reduce the originally badly conditioned overparametrized model. Among others we need not take care about model orders the fixing of which is a common preliminary step used by standard techniques. For short time series paths (100 or less samples) the sparse parameter estimates provide more precise predictions compared with those based on standard maximum likelihood estimators from MATLAB's System Identification Toolbox (IDENT). For longer paths (500 o
Název v anglickém jazyce
Sparse Parameter Estimation in Overcomplete Time Series Models
Popis výsledku anglicky
We suggest a new approach to parameter estimation in time series models with large number of parameters. We use a modified version of the Basis Pursuit Algorithm (BPA) by Chen et al [SIAM Review 43 (2001), No. 1] to verify its applicability to times series modeling. For simplicity we restrict to ARIMA models of univariate stationary time series. After having accomplished and analyzed a lot of numerical simulations we can draw the following conclusions: (1) We were able to reliably identify nearly zero parameters in the model allowing us to reduce the originally badly conditioned overparametrized model. Among others we need not take care about model orders the fixing of which is a common preliminary step used by standard techniques. For short time series paths (100 or less samples) the sparse parameter estimates provide more precise predictions compared with those based on standard maximum likelihood estimators from MATLAB's System Identification Toolbox (IDENT). For longer paths (500 o
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2006
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Austrian Journal of Statistics
ISSN
1026-597X
e-ISSN
—
Svazek periodika
35/2006
Číslo periodika v rámci svazku
2&3
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
8
Strana od-do
371-378
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—