Habit Formation, Price Indexation and Wage Indexation in the DSGE Model: Specification, Estimation and Model Fit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F11%3A00052649" target="_blank" >RIV/00216224:14560/11:00052649 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Habit Formation, Price Indexation and Wage Indexation in the DSGE Model: Specification, Estimation and Model Fit
Popis výsledku v původním jazyce
In order to determine which specification provides better fit of the data, this paper presents several specifications of a closed economy DSGE model with nominal rigidities. The goal of this paper is to find out whether some characteristics widely used in New Keynesian DSGE models, such as habit formation in consumption, price indexation and wage indexation, provide better fit of the macroeconomic data. Model specifications are estimated on the data of the US economy and Euro Area 12 economy, using Bayesian techniques, particularly the Metropolis Hastings algorithm. The data fit measure is a Bayes factor calculated from marginal likelihoods. Results suggest that including habit formation in consumption significantly improves the empirical data fit of the model, whereas including partial price indexation and partial wage indexation does not improve the empirical data fit of the model. Variants with full price indexation and full wage indexation were the worst ones concerning their data
Název v anglickém jazyce
Habit Formation, Price Indexation and Wage Indexation in the DSGE Model: Specification, Estimation and Model Fit
Popis výsledku anglicky
In order to determine which specification provides better fit of the data, this paper presents several specifications of a closed economy DSGE model with nominal rigidities. The goal of this paper is to find out whether some characteristics widely used in New Keynesian DSGE models, such as habit formation in consumption, price indexation and wage indexation, provide better fit of the macroeconomic data. Model specifications are estimated on the data of the US economy and Euro Area 12 economy, using Bayesian techniques, particularly the Metropolis Hastings algorithm. The data fit measure is a Bayes factor calculated from marginal likelihoods. Results suggest that including habit formation in consumption significantly improves the empirical data fit of the model, whereas including partial price indexation and partial wage indexation does not improve the empirical data fit of the model. Variants with full price indexation and full wage indexation were the worst ones concerning their data
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AH - Ekonomie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/1M0524" target="_blank" >1M0524: Centrum výzkumu konkurenční schopnosti české ekonomiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Národohospodářský obzor ? Review of Economic Perspectives
ISSN
1213-2446
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
23
Strana od-do
71-92
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—