Cyclicity in EL-hypergroups
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F18%3A00104417" target="_blank" >RIV/00216224:14560/18:00104417 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/18:PU129647
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/10/11/611" target="_blank" >https://www.mdpi.com/2073-8994/10/11/611</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym10110611" target="_blank" >10.3390/sym10110611</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cyclicity in EL-hypergroups
Popis výsledku v původním jazyce
In the algebra of single-valued structures, cyclicity is one of the fundamental properties of groups. Therefore, it is natural to study it also in the algebra of multivalued structures (algebraic hyperstructure theory). However, when one considers the nature of generalizing this property, at least two (or rather three) approaches seem natural. Historically, all of these had been introduced and studied by 1990. However, since most of the results had originally been published in journals without proper international impact and later—without the possibility to include proper background and context-synthetized in books, the current way of treating the concept of cyclicity in the algebraic hyperstructure theory is often rather confusing. Therefore, we start our paper with a rather long introduction giving an overview and motivation of existing approaches to the cyclicity in algebraic hyperstructures. In the second part of our paper, we relate these to EL-hyperstructures, a broad class of algebraic hyperstructures constructed from (pre)ordered (semi)groups, which were defined and started to be studied much later than sources discussed in the introduction were published.
Název v anglickém jazyce
Cyclicity in EL-hypergroups
Popis výsledku anglicky
In the algebra of single-valued structures, cyclicity is one of the fundamental properties of groups. Therefore, it is natural to study it also in the algebra of multivalued structures (algebraic hyperstructure theory). However, when one considers the nature of generalizing this property, at least two (or rather three) approaches seem natural. Historically, all of these had been introduced and studied by 1990. However, since most of the results had originally been published in journals without proper international impact and later—without the possibility to include proper background and context-synthetized in books, the current way of treating the concept of cyclicity in the algebraic hyperstructure theory is often rather confusing. Therefore, we start our paper with a rather long introduction giving an overview and motivation of existing approaches to the cyclicity in algebraic hyperstructures. In the second part of our paper, we relate these to EL-hyperstructures, a broad class of algebraic hyperstructures constructed from (pre)ordered (semi)groups, which were defined and started to be studied much later than sources discussed in the introduction were published.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
10
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000451165100078
EID výsledku v databázi Scopus
2-s2.0-85057878258