Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Cyclicity in EL-hypergroups

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F18%3A00104417" target="_blank" >RIV/00216224:14560/18:00104417 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26220/18:PU129647

  • Výsledek na webu

    <a href="https://www.mdpi.com/2073-8994/10/11/611" target="_blank" >https://www.mdpi.com/2073-8994/10/11/611</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/sym10110611" target="_blank" >10.3390/sym10110611</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Cyclicity in EL-hypergroups

  • Popis výsledku v původním jazyce

    In the algebra of single-valued structures, cyclicity is one of the fundamental properties of groups. Therefore, it is natural to study it also in the algebra of multivalued structures (algebraic hyperstructure theory). However, when one considers the nature of generalizing this property, at least two (or rather three) approaches seem natural. Historically, all of these had been introduced and studied by 1990. However, since most of the results had originally been published in journals without proper international impact and later—without the possibility to include proper background and context-synthetized in books, the current way of treating the concept of cyclicity in the algebraic hyperstructure theory is often rather confusing. Therefore, we start our paper with a rather long introduction giving an overview and motivation of existing approaches to the cyclicity in algebraic hyperstructures. In the second part of our paper, we relate these to EL-hyperstructures, a broad class of algebraic hyperstructures constructed from (pre)ordered (semi)groups, which were defined and started to be studied much later than sources discussed in the introduction were published.

  • Název v anglickém jazyce

    Cyclicity in EL-hypergroups

  • Popis výsledku anglicky

    In the algebra of single-valued structures, cyclicity is one of the fundamental properties of groups. Therefore, it is natural to study it also in the algebra of multivalued structures (algebraic hyperstructure theory). However, when one considers the nature of generalizing this property, at least two (or rather three) approaches seem natural. Historically, all of these had been introduced and studied by 1990. However, since most of the results had originally been published in journals without proper international impact and later—without the possibility to include proper background and context-synthetized in books, the current way of treating the concept of cyclicity in the algebraic hyperstructure theory is often rather confusing. Therefore, we start our paper with a rather long introduction giving an overview and motivation of existing approaches to the cyclicity in algebraic hyperstructures. In the second part of our paper, we relate these to EL-hyperstructures, a broad class of algebraic hyperstructures constructed from (pre)ordered (semi)groups, which were defined and started to be studied much later than sources discussed in the introduction were published.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10100 - Mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Symmetry

  • ISSN

    2073-8994

  • e-ISSN

    2073-8994

  • Svazek periodika

    10

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    000451165100078

  • EID výsledku v databázi Scopus

    2-s2.0-85057878258