Network-based asset allocation strategies
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F19%3A00108925" target="_blank" >RIV/00216224:14560/19:00108925 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S106294081830072X" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S106294081830072X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.najef.2018.06.008" target="_blank" >10.1016/j.najef.2018.06.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Network-based asset allocation strategies
Popis výsledku v původním jazyce
In this study, we construct financial networks in which nodes are represented by assets and where edges are based on long-run correlations. We construct four networks (complete graph, a minimum spanning tree, a planar maximally filtered graph, and a threshold significance graph) and use three centrality measures (betweenness, eigenvalue centrality, and the expected force). To improve risk-return characteristics of well-known return maximization and risk minimization benchmark portfolios, we propose simple adjustments to portfolio selection strategies that utilize centralization measures from financial networks. From a sample of 45 assets (stock market indices, bond and money market instruments, commodities, and foreign exchange rates) and from data for 1999 to 2015, we show that irrespective of the network and centrality employed, the proposed network-based asset allocation strategies improve key portfolio return characteristics in an out-of-sample framework, most notably, risk and left-tail risk-adjusted returns. Resolving portfolio model selection uncertainties further improves risk-return characteristics. Improvements made to portfolio strategies based on risk minimization are also robust to transaction costs.
Název v anglickém jazyce
Network-based asset allocation strategies
Popis výsledku anglicky
In this study, we construct financial networks in which nodes are represented by assets and where edges are based on long-run correlations. We construct four networks (complete graph, a minimum spanning tree, a planar maximally filtered graph, and a threshold significance graph) and use three centrality measures (betweenness, eigenvalue centrality, and the expected force). To improve risk-return characteristics of well-known return maximization and risk minimization benchmark portfolios, we propose simple adjustments to portfolio selection strategies that utilize centralization measures from financial networks. From a sample of 45 assets (stock market indices, bond and money market instruments, commodities, and foreign exchange rates) and from data for 1999 to 2015, we show that irrespective of the network and centrality employed, the proposed network-based asset allocation strategies improve key portfolio return characteristics in an out-of-sample framework, most notably, risk and left-tail risk-adjusted returns. Resolving portfolio model selection uncertainties further improves risk-return characteristics. Improvements made to portfolio strategies based on risk minimization are also robust to transaction costs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The North American Journal of Economics and Finance
ISSN
1062-9408
e-ISSN
1879-0860
Svazek periodika
47
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
516-536
Kód UT WoS článku
000457665700034
EID výsledku v databázi Scopus
2-s2.0-85049314459