What drives U.S. financial sector volatility? A Bayesian model averaging perspective
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F20%3A00116660" target="_blank" >RIV/00216224:14560/20:00116660 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0275531919302697#" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0275531919302697#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ribaf.2019.101095" target="_blank" >10.1016/j.ribaf.2019.101095</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
What drives U.S. financial sector volatility? A Bayesian model averaging perspective
Popis výsledku v původním jazyce
We investigate the driving forces behind the quarterly stock price volatility of firms in the U.S. financial sector over the period from 1990 to 2017. The driving forces represent a set of 28 economic indicators that are routinely used to detect financial instability and crises and correspond to the development of the financial, monetary, real, trade and fiscal sector as well as to the development of the bond and equity markets. The dimensionality and model choice uncertainty are addressed using Bayesian model averaging, which led to the identification of only seven variables that tend to systematically drive the stock price volatility of financial firms in the U.S.: housing prices, short-term interest rates, net national savings, default yield spread, and three credit market variables. We also confirm that our results are not an artefact of volatility associated with market downturns (for negative semi-volatility), as the results are similar even when market volatility is associated with market upsurge (positive semi-volatility). Given the identified drivers, our results provide supporting empirical evidence that dampening credit cycles might lead to decreased volatility in the financial sector.
Název v anglickém jazyce
What drives U.S. financial sector volatility? A Bayesian model averaging perspective
Popis výsledku anglicky
We investigate the driving forces behind the quarterly stock price volatility of firms in the U.S. financial sector over the period from 1990 to 2017. The driving forces represent a set of 28 economic indicators that are routinely used to detect financial instability and crises and correspond to the development of the financial, monetary, real, trade and fiscal sector as well as to the development of the bond and equity markets. The dimensionality and model choice uncertainty are addressed using Bayesian model averaging, which led to the identification of only seven variables that tend to systematically drive the stock price volatility of financial firms in the U.S.: housing prices, short-term interest rates, net national savings, default yield spread, and three credit market variables. We also confirm that our results are not an artefact of volatility associated with market downturns (for negative semi-volatility), as the results are similar even when market volatility is associated with market upsurge (positive semi-volatility). Given the identified drivers, our results provide supporting empirical evidence that dampening credit cycles might lead to decreased volatility in the financial sector.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
RESEARCH IN INTERNATIONAL BUSINESS AND FINANCE
ISSN
0275-5319
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
January
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
101095
Kód UT WoS článku
000502534700053
EID výsledku v databázi Scopus
2-s2.0-85071867198