Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

What drives volatility of the US oil and gas firms?

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F21%3A00119319" target="_blank" >RIV/00216224:14560/21:00119319 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S014098832100270X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S014098832100270X</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eneco.2021.105367" target="_blank" >10.1016/j.eneco.2021.105367</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    What drives volatility of the US oil and gas firms?

  • Popis výsledku v původním jazyce

    We study how the day-ahead stock price volatility of 15 firms that are S&amp;P 500 constituents in the Oil &amp; Gas Exploration &amp; Production sub-industry is driven through six volatility factors represented by realized volatilities, namely, (i) firms’ own volatility, (ii) industry market volatility, (iii) local (U.S.) market volatility, (iv) world equity market volatility, (v) oil price volatility, and (vi) natural gas price volatility. Existing studies have reported results based on analysis of one or few volatility components, but given the high dependence among volatility factors, this might bias (overestimate) the true importance of each of the volatility factors on the price fluctuation of stocks in the Oil &amp; Gas Exploration &amp; Production sub-industry. To take into account this inter-relatedness of volatility factors, we study all volatility factors together. Using augmented heterogeneous autoregressive (HAR) models and dynamic model averaging, our analysis shows that market volatility is most influential, followed by a stock’s own volatility and industry level volatility. The role of the volatility of the oil market is of lesser importance, while the volatility of the world equity market does not appear to contain incremental information useful for predicting the volatility of firms in the Oil &amp; Gas Exploration &amp; Production sub-industry. The role of the natural gas market is specific. An in-sample analysis suggests a negative relationship between firm-level volatility and volatility on the natural gas market. However, in an out-of-sample framework, the volatility of the natural gas market appears to be unrelated to firm-level volatility. Dynamic model averaging further suggests that the market and industry factors are time-varying. These findings have implications for financial risk management, as we show that in an out-of-sample framework, HAR models augmented with volatility factors outperform the plain HAR model by up to a 3.88% increase in volatility forecast accuracy.

  • Název v anglickém jazyce

    What drives volatility of the US oil and gas firms?

  • Popis výsledku anglicky

    We study how the day-ahead stock price volatility of 15 firms that are S&amp;P 500 constituents in the Oil &amp; Gas Exploration &amp; Production sub-industry is driven through six volatility factors represented by realized volatilities, namely, (i) firms’ own volatility, (ii) industry market volatility, (iii) local (U.S.) market volatility, (iv) world equity market volatility, (v) oil price volatility, and (vi) natural gas price volatility. Existing studies have reported results based on analysis of one or few volatility components, but given the high dependence among volatility factors, this might bias (overestimate) the true importance of each of the volatility factors on the price fluctuation of stocks in the Oil &amp; Gas Exploration &amp; Production sub-industry. To take into account this inter-relatedness of volatility factors, we study all volatility factors together. Using augmented heterogeneous autoregressive (HAR) models and dynamic model averaging, our analysis shows that market volatility is most influential, followed by a stock’s own volatility and industry level volatility. The role of the volatility of the oil market is of lesser importance, while the volatility of the world equity market does not appear to contain incremental information useful for predicting the volatility of firms in the Oil &amp; Gas Exploration &amp; Production sub-industry. The role of the natural gas market is specific. An in-sample analysis suggests a negative relationship between firm-level volatility and volatility on the natural gas market. However, in an out-of-sample framework, the volatility of the natural gas market appears to be unrelated to firm-level volatility. Dynamic model averaging further suggests that the market and industry factors are time-varying. These findings have implications for financial risk management, as we show that in an out-of-sample framework, HAR models augmented with volatility factors outperform the plain HAR model by up to a 3.88% increase in volatility forecast accuracy.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50206 - Finance

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA18-05829S" target="_blank" >GA18-05829S: Predikce volatility na rozvijících se finančních trzích</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Energy Economics

  • ISSN

    0140-9883

  • e-ISSN

    1873-6181

  • Svazek periodika

    100

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    1-10

  • Kód UT WoS článku

    000694892100034

  • EID výsledku v databázi Scopus

    2-s2.0-85108118946