Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

E-service quality and e-retailers: Attribute-based multi-dimensional scaling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F21%3A00120768" target="_blank" >RIV/00216224:14560/21:00120768 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0747563220303551" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0747563220303551</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.chb.2020.106608" target="_blank" >10.1016/j.chb.2020.106608</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    E-service quality and e-retailers: Attribute-based multi-dimensional scaling

  • Popis výsledku v původním jazyce

    Digital retail is a technology-driven business. Customers shop with the help of cutting-edge self-service technologies deployed by marketers to enhance customer experience and e- service quality (e-SQ). However, there is a lack of understanding of how customers differentiate between various digital retailers while shopping. We attempt to compare similarity and dissimilarity between top e-retailers based on customer perception grounded in seven dimensions of e-SQ using data from an important emerging market. Multi-Dimensional Scaling (MDS) technique was applied to analyze similarity judgments of the respondents to draw an aggregate perceptual map of the selected e-retailers. Subsequently, discriminant analysis was carried out and the results were used to create combined spatial maps of e- retailers and e-SQ attributes. It was found that consumers can perceive top e-retailers as similar or isolated brands. Our findings suggest that all seven e-SQ attributes can create differentiation among leading e-retailing brands. However, we recommend e-retailers to fortify their service recovery dimensions, as consumers give greater importance to them. Further, we benchmarked fulfilment and contact as critical dimensions for managing e-SQ from the top two e-retailers (Amazon India and Flipkart) and discussed how they are deploying cutting-edge technologies to beef up these dimensions.

  • Název v anglickém jazyce

    E-service quality and e-retailers: Attribute-based multi-dimensional scaling

  • Popis výsledku anglicky

    Digital retail is a technology-driven business. Customers shop with the help of cutting-edge self-service technologies deployed by marketers to enhance customer experience and e- service quality (e-SQ). However, there is a lack of understanding of how customers differentiate between various digital retailers while shopping. We attempt to compare similarity and dissimilarity between top e-retailers based on customer perception grounded in seven dimensions of e-SQ using data from an important emerging market. Multi-Dimensional Scaling (MDS) technique was applied to analyze similarity judgments of the respondents to draw an aggregate perceptual map of the selected e-retailers. Subsequently, discriminant analysis was carried out and the results were used to create combined spatial maps of e- retailers and e-SQ attributes. It was found that consumers can perceive top e-retailers as similar or isolated brands. Our findings suggest that all seven e-SQ attributes can create differentiation among leading e-retailing brands. However, we recommend e-retailers to fortify their service recovery dimensions, as consumers give greater importance to them. Further, we benchmarked fulfilment and contact as critical dimensions for managing e-SQ from the top two e-retailers (Amazon India and Flipkart) and discussed how they are deploying cutting-edge technologies to beef up these dimensions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50204 - Business and management

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers in Human Behavior

  • ISSN

    0747-5632

  • e-ISSN

  • Svazek periodika

    115

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    14

  • Strana od-do

    106608

  • Kód UT WoS článku

    000602330800006

  • EID výsledku v databázi Scopus

    2-s2.0-85094210476