IoT Data Quality Issues and Potential Solutions: A Literature Review
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F23%3A00129953" target="_blank" >RIV/00216224:14560/23:00129953 - isvavai.cz</a>
Výsledek na webu
<a href="https://academic.oup.com/comjnl/advance-article-abstract/doi/10.1093/comjnl/bxac014/6529197?redirectedFrom=fulltext" target="_blank" >https://academic.oup.com/comjnl/advance-article-abstract/doi/10.1093/comjnl/bxac014/6529197?redirectedFrom=fulltext</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/comjnl/bxab183" target="_blank" >10.1093/comjnl/bxab183</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IoT Data Quality Issues and Potential Solutions: A Literature Review
Popis výsledku v původním jazyce
In the Internet of Things (IoT), data gathered from dozens of devices are the base for creating business value and developing new products and services. If data are of poor quality, decisions are likely to be non-sense. Data quality is crucial to gain business value of the IoT initiatives. This paper presents a systematic literature review regarding IoT data quality from 2000 to 2020. We analyzed 58 articles to identify IoT data quality dimensions and issues and their categorizations. According to this analysis, we offer a classification of IoT data characterizations using the focus group method and clarify the link between dimensions and issues in each category. Manifesting a link between dimensions and issues in each category is incumbent, while this critical affair in extant categorizations is ignored. We also examine data security as an important data quality issue and suggest potential solutions to overcome IoT's security issues. The finding of this study proposes a new research discipline for additional examination for researchers and practitioners in determining data quality in the context of IoT.
Název v anglickém jazyce
IoT Data Quality Issues and Potential Solutions: A Literature Review
Popis výsledku anglicky
In the Internet of Things (IoT), data gathered from dozens of devices are the base for creating business value and developing new products and services. If data are of poor quality, decisions are likely to be non-sense. Data quality is crucial to gain business value of the IoT initiatives. This paper presents a systematic literature review regarding IoT data quality from 2000 to 2020. We analyzed 58 articles to identify IoT data quality dimensions and issues and their categorizations. According to this analysis, we offer a classification of IoT data characterizations using the focus group method and clarify the link between dimensions and issues in each category. Manifesting a link between dimensions and issues in each category is incumbent, while this critical affair in extant categorizations is ignored. We also examine data security as an important data quality issue and suggest potential solutions to overcome IoT's security issues. The finding of this study proposes a new research discipline for additional examination for researchers and practitioners in determining data quality in the context of IoT.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_027%2F0008360" target="_blank" >EF16_027/0008360: Postdoc@MUNI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER JOURNAL
ISSN
0010-4620
e-ISSN
1460-2067
Svazek periodika
66
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
615-625
Kód UT WoS článku
000756711200001
EID výsledku v databázi Scopus
—