Using online job postings to predict key labour market indicators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F23%3A00132300" target="_blank" >RIV/00216224:14560/23:00132300 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.sagepub.com/doi/full/10.1177/08944393221085705" target="_blank" >https://journals.sagepub.com/doi/full/10.1177/08944393221085705</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1177/08944393221085705" target="_blank" >10.1177/08944393221085705</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using online job postings to predict key labour market indicators
Popis výsledku v původním jazyce
We explore data collected as an administrative by-product of an online job advertisement portal with dominant market coverage in Slovakia. Specifically, we process information on the aggregate quarterly registered number of online job vacancies. We assess the potential of this information in predicting official vacancy, employment and unemployment statistics. We compare the characteristics of the online job posting data with those reported in comparable studies conducted for the Netherlands and Italy. Several differences are identified; most notably, our data are more persistent and stationary around a linear time trend. Additionally, we assess the predictive potential of the online job posting data by comparing in- and out-of-sample estimates of three regression models that predict job vacancy statistics and employment and unemployment levels one to four quarters ahead. Irrespective of the predictive horizon and labour market indicator, the online job posting data always provide a statistically significant predictor. These results are further solidified in an out-of-sample study that shows that forecast errors are lowest for predictions generated by models incorporating online job posting data. In general, the usefulness of the data seems best for longer forecast horizons.
Název v anglickém jazyce
Using online job postings to predict key labour market indicators
Popis výsledku anglicky
We explore data collected as an administrative by-product of an online job advertisement portal with dominant market coverage in Slovakia. Specifically, we process information on the aggregate quarterly registered number of online job vacancies. We assess the potential of this information in predicting official vacancy, employment and unemployment statistics. We compare the characteristics of the online job posting data with those reported in comparable studies conducted for the Netherlands and Italy. Several differences are identified; most notably, our data are more persistent and stationary around a linear time trend. Additionally, we assess the predictive potential of the online job posting data by comparing in- and out-of-sample estimates of three regression models that predict job vacancy statistics and employment and unemployment levels one to four quarters ahead. Irrespective of the predictive horizon and labour market indicator, the online job posting data always provide a statistically significant predictor. These results are further solidified in an out-of-sample study that shows that forecast errors are lowest for predictions generated by models incorporating online job posting data. In general, the usefulness of the data seems best for longer forecast horizons.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Social Science Computer Review
ISSN
0894-4393
e-ISSN
1552-8286
Svazek periodika
41
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
1630-1649
Kód UT WoS článku
000799700900001
EID výsledku v databázi Scopus
2-s2.0-85130618439