Online job vacancy attractiveness: Increasing views, reactions and conversions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14560%2F22%3A00127160" target="_blank" >RIV/00216224:14560/22:00127160 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S156742232200076X" target="_blank" >https://www.sciencedirect.com/science/article/pii/S156742232200076X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.elerap.2022.101192" target="_blank" >10.1016/j.elerap.2022.101192</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Online job vacancy attractiveness: Increasing views, reactions and conversions
Popis výsledku v původním jazyce
E-commerce development has not bypassed the labor market, and employers seeking to hire are posting vacancies on specialized online platforms. Operators of such online platforms and employers are assessing the attractiveness of job vacancies, as they are interested in making online job vacancies (OJVs) more attractive to job seekers, i.e. to increase the number of views of the posted job ad, the number of times job seekers submit an application form and conversions (the ratio of the two). However, given that job types and job seekers are extremely heterogeneous, it is difficult for employers and specialized online platform operators to design attractive job ads. In collaboration with a leading OJV platform in Slovakia, we study whether machine-learning methods can improve the predictions of OJV attractiveness on a sample of 32482 OJVs that offer as many as 883 job features. Our study shows that, as opposed to various linear models, considerable prediction improvements can be achieved using random forest, which exploits possible nonlinear relationships between combinations of explanatory variables and measures of attractiveness. Based on this insight, we perform a statistical evaluation of key variables of importance. We find that the job classification, job benefits, and variables related to a simple morphological description of the job and job title are relevant. The results of this study can help the operators of specialized job vacancy platforms and employers improve their job ads to attract more job seekers.
Název v anglickém jazyce
Online job vacancy attractiveness: Increasing views, reactions and conversions
Popis výsledku anglicky
E-commerce development has not bypassed the labor market, and employers seeking to hire are posting vacancies on specialized online platforms. Operators of such online platforms and employers are assessing the attractiveness of job vacancies, as they are interested in making online job vacancies (OJVs) more attractive to job seekers, i.e. to increase the number of views of the posted job ad, the number of times job seekers submit an application form and conversions (the ratio of the two). However, given that job types and job seekers are extremely heterogeneous, it is difficult for employers and specialized online platform operators to design attractive job ads. In collaboration with a leading OJV platform in Slovakia, we study whether machine-learning methods can improve the predictions of OJV attractiveness on a sample of 32482 OJVs that offer as many as 883 job features. Our study shows that, as opposed to various linear models, considerable prediction improvements can be achieved using random forest, which exploits possible nonlinear relationships between combinations of explanatory variables and measures of attractiveness. Based on this insight, we perform a statistical evaluation of key variables of importance. We find that the job classification, job benefits, and variables related to a simple morphological description of the job and job title are relevant. The results of this study can help the operators of specialized job vacancy platforms and employers improve their job ads to attract more job seekers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Electronic Commerce Research and Applications
ISSN
1567-4223
e-ISSN
1873-7846
Svazek periodika
55
Číslo periodika v rámci svazku
September - October
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000863311700002
EID výsledku v databázi Scopus
2-s2.0-85136557119