Efficient sparse matrix-delayed vector multiplication for discretized neural field model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F18%3A00102136" target="_blank" >RIV/00216224:14610/18:00102136 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11227-017-2194-4" target="_blank" >https://doi.org/10.1007/s11227-017-2194-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11227-017-2194-4" target="_blank" >10.1007/s11227-017-2194-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient sparse matrix-delayed vector multiplication for discretized neural field model
Popis výsledku v původním jazyce
Computational models of the human brain provide an important tool for studying the principles behind brain function and disease. To achieve whole-brain simulation, models are formulated at the level of neuronal populations as systems of delayed differential equations. In this paper, we show that the integration of large systems of sparsely connected neural masses is similar to well-studied sparse matrix-vector multiplication; however, due to delayed contributions, it differs in the data access pattern to the vectors. To improve data locality, we propose a combination of node reordering and tiled schedules derived from the connectivity matrix of the particular system, which allows performing multiple integration steps within a tile. We present two schedules: with a serial processing of the tiles and one allowing for parallel processing of the tiles. We evaluate the presented schedules showing speedup up to 2x on single-socket CPU, and 1.25x on Xeon Phi accelerator.
Název v anglickém jazyce
Efficient sparse matrix-delayed vector multiplication for discretized neural field model
Popis výsledku anglicky
Computational models of the human brain provide an important tool for studying the principles behind brain function and disease. To achieve whole-brain simulation, models are formulated at the level of neuronal populations as systems of delayed differential equations. In this paper, we show that the integration of large systems of sparsely connected neural masses is similar to well-studied sparse matrix-vector multiplication; however, due to delayed contributions, it differs in the data access pattern to the vectors. To improve data locality, we propose a combination of node reordering and tiled schedules derived from the connectivity matrix of the particular system, which allows performing multiple integration steps within a tile. We present two schedules: with a serial processing of the tiles and one allowing for parallel processing of the tiles. We evaluate the presented schedules showing speedup up to 2x on single-socket CPU, and 1.25x on Xeon Phi accelerator.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_013%2F0001802" target="_blank" >EF16_013/0001802: CERIT Scientific Cloud</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Journal of Supercomputing
ISSN
0920-8542
e-ISSN
—
Svazek periodika
74
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
22
Strana od-do
1863-1884
Kód UT WoS článku
000430412400005
EID výsledku v databázi Scopus
2-s2.0-85038114439