Joint direct and transposed sparse matrix-vector multiplication for multithreaded CPUs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F21%3A00346816" target="_blank" >RIV/68407700:21240/21:00346816 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/cpe.6236" target="_blank" >https://doi.org/10.1002/cpe.6236</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/cpe.6236" target="_blank" >10.1002/cpe.6236</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Joint direct and transposed sparse matrix-vector multiplication for multithreaded CPUs
Popis výsledku v původním jazyce
Repeatedly performing sparse matrix-vector multiplication (SpMV) followed by transposed sparse matrix-vector multiplication (SpMᵀV) with the same matrix is a part of several algorithms, for example, the Lanczos biorthogonalization algorithm and the biconjugate gradient method. Such algorithms can benefit from combining parallel SpMV and SpMᵀV into a single operation we call `joint direct and transposed sparse matrix-vector multiplication’ (SpMMᵀV). In this article, we present a parallel SpMMᵀV algorithm for shared-memory CPUs. The algorithm uses a sparse matrix format that divides the stored matrix into sparse matrix blocks and compresses the row and column indices of the matrix. This sparse matrix format can be also used for SpMV, SpMᵀV, and similar sparse matrix-vector operations. We expand upon existing research by suggesting new variants of the parallel SpMMᵀV algorithm and by extending the algorithm to efficiently support symmetric matrices. We compare the performance of the presented parallel SpMMᵀV algorithm with alternative approaches, which use state-of-the-art sparse matrix formats and libraries, using sparse matrices from real-world applications. The performance results indicate that the median performance of our proposed parallel SpMMᵀV algorithm is up to 45% higher than of the alternative approaches.
Název v anglickém jazyce
Joint direct and transposed sparse matrix-vector multiplication for multithreaded CPUs
Popis výsledku anglicky
Repeatedly performing sparse matrix-vector multiplication (SpMV) followed by transposed sparse matrix-vector multiplication (SpMᵀV) with the same matrix is a part of several algorithms, for example, the Lanczos biorthogonalization algorithm and the biconjugate gradient method. Such algorithms can benefit from combining parallel SpMV and SpMᵀV into a single operation we call `joint direct and transposed sparse matrix-vector multiplication’ (SpMMᵀV). In this article, we present a parallel SpMMᵀV algorithm for shared-memory CPUs. The algorithm uses a sparse matrix format that divides the stored matrix into sparse matrix blocks and compresses the row and column indices of the matrix. This sparse matrix format can be also used for SpMV, SpMᵀV, and similar sparse matrix-vector operations. We expand upon existing research by suggesting new variants of the parallel SpMMᵀV algorithm and by extending the algorithm to efficiently support symmetric matrices. We compare the performance of the presented parallel SpMMᵀV algorithm with alternative approaches, which use state-of-the-art sparse matrix formats and libraries, using sparse matrices from real-world applications. The performance results indicate that the median performance of our proposed parallel SpMMᵀV algorithm is up to 45% higher than of the alternative approaches.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000765" target="_blank" >EF16_019/0000765: Výzkumné centrum informatiky</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Concurrency and Computation: Practice and Experience
ISSN
1532-0626
e-ISSN
1532-0634
Svazek periodika
33
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
26
Strana od-do
1-26
Kód UT WoS článku
000620329400001
EID výsledku v databázi Scopus
2-s2.0-85101241296