Survey of Attack Projection, Prediction, and Forecasting in Cyber Security
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F19%3A00108866" target="_blank" >RIV/00216224:14610/19:00108866 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8470942/" target="_blank" >https://ieeexplore.ieee.org/document/8470942/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/COMST.2018.2871866" target="_blank" >10.1109/COMST.2018.2871866</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Survey of Attack Projection, Prediction, and Forecasting in Cyber Security
Popis výsledku v původním jazyce
This paper provides a survey of prediction, and forecasting methods used in cyber security. Four main tasks are discussed first, attack projection and intention recognition, in which there is a need to predict the next move or the intentions of the attacker, intrusion prediction, in which there is a need to predict upcoming cyber attacks, and network security situation forecasting, in which we project cybersecurity situation in the whole network. Methods and approaches for addressing these tasks often share the theoretical background and are often complementary. In this survey, both methods based on discrete models, such as attack graphs, Bayesian networks, and Markov models, and continuous models, such as time series and grey models, are surveyed, compared, and contrasted. We further discuss machine learning and data mining approaches, that have gained a lot of attention recently and appears promising for such a constantly changing environment, which is cyber security. The survey also focuses on the practical usability of the methods and problems related to their evaluation.
Název v anglickém jazyce
Survey of Attack Projection, Prediction, and Forecasting in Cyber Security
Popis výsledku anglicky
This paper provides a survey of prediction, and forecasting methods used in cyber security. Four main tasks are discussed first, attack projection and intention recognition, in which there is a need to predict the next move or the intentions of the attacker, intrusion prediction, in which there is a need to predict upcoming cyber attacks, and network security situation forecasting, in which we project cybersecurity situation in the whole network. Methods and approaches for addressing these tasks often share the theoretical background and are often complementary. In this survey, both methods based on discrete models, such as attack graphs, Bayesian networks, and Markov models, and continuous models, such as time series and grey models, are surveyed, compared, and contrasted. We further discuss machine learning and data mining approaches, that have gained a lot of attention recently and appears promising for such a constantly changing environment, which is cyber security. The survey also focuses on the practical usability of the methods and problems related to their evaluation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Communications Surveys & Tutorials
ISSN
1553-877X
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
640-660
Kód UT WoS článku
000459730200024
EID výsledku v databázi Scopus
2-s2.0-85054236310