Predictive Methods in Cyber Defense: Current Experience and Research Challenges
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F63839172%3A_____%2F20%3A10133295" target="_blank" >RIV/63839172:_____/20:10133295 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14610/21:00120728
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167739X20329836" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167739X20329836</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.future.2020.10.006" target="_blank" >10.1016/j.future.2020.10.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictive Methods in Cyber Defense: Current Experience and Research Challenges
Popis výsledku v původním jazyce
Predictive analysis allows next-generation cyber defense that is more proactive than current approaches based on intrusion detection. In this paper, we discuss various aspects of predictive methods in cyber defense and illustrate them on three examples of recent approaches. The first approach uses data mining to extract frequent attack scenarios and uses them to project ongoing cyberattacks. The second approach uses a dynamic network entity reputation score to predict malicious actors. The third approach uses time series analysis to forecast attack rates in the network. This paper presents a unique evaluation of the three distinct methods in a common environment of an intrusion detection alert sharing platform, which allows for a comparison of the approaches and illustrates the capabilities of predictive analysis for current and future research and cybersecurity operations. Our experiments show that all three methods achieved a sufficient technology readiness level for experimental deployment in an operational setting with promising accuracy and usability. Namely prediction and projection methods, despite their differences, are highly usable for predictive blacklisting, the first provides a more detailed output, and the second is more extensible. Network security situation forecasting is lightweight and displays very high accuracy, but does not provide details on predicted events.
Název v anglickém jazyce
Predictive Methods in Cyber Defense: Current Experience and Research Challenges
Popis výsledku anglicky
Predictive analysis allows next-generation cyber defense that is more proactive than current approaches based on intrusion detection. In this paper, we discuss various aspects of predictive methods in cyber defense and illustrate them on three examples of recent approaches. The first approach uses data mining to extract frequent attack scenarios and uses them to project ongoing cyberattacks. The second approach uses a dynamic network entity reputation score to predict malicious actors. The third approach uses time series analysis to forecast attack rates in the network. This paper presents a unique evaluation of the three distinct methods in a common environment of an intrusion detection alert sharing platform, which allows for a comparison of the approaches and illustrates the capabilities of predictive analysis for current and future research and cybersecurity operations. Our experiments show that all three methods achieved a sufficient technology readiness level for experimental deployment in an operational setting with promising accuracy and usability. Namely prediction and projection methods, despite their differences, are highly usable for predictive blacklisting, the first provides a more detailed output, and the second is more extensible. Network security situation forecasting is lightweight and displays very high accuracy, but does not provide details on predicted events.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Future Generation Computer Systems
ISSN
0167-739X
e-ISSN
—
Svazek periodika
115
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
14
Strana od-do
517-530
Kód UT WoS článku
000591438900018
EID výsledku v databázi Scopus
2-s2.0-85092215125