Predictions of Network Attacks in Collaborative Environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F20%3A00115348" target="_blank" >RIV/00216224:14610/20:00115348 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/NOMS47738.2020.9110261" target="_blank" >http://dx.doi.org/10.1109/NOMS47738.2020.9110261</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/NOMS47738.2020.9110261" target="_blank" >10.1109/NOMS47738.2020.9110261</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predictions of Network Attacks in Collaborative Environment
Popis výsledku v původním jazyce
This paper is a digest of the thesis on predicting cyber attacks in a collaborative environment. While previous works mostly focused on predicting attacks as seen from a single observation point, we proposed taking advantage of collaboration and exchange of intrusion detection alerts among organizations and networks. Thus, we can observe the cyber attack on a large scale and predict the next action of an adversary and its target. The thesis follows the three levels of cyber situational awareness: perception, comprehension, and projection. In the perception phase, we discuss the improvements of intrusion detection systems that allow for sharing intrusion detection alerts and their correlation. In the comprehension phase, we employed data mining to discover frequent attack patterns. In the projection phase, we present the analytical framework for the predictive analysis of the alerts backed by data mining and contemporary data processing approaches. The results are shown from experimental evaluation in the security alert sharing platform SABU, where real-world alerts from Czech academic and commercial networks are shared. The thesis is accompanied by the implementation of the analytical framework and a dataset that provides a baseline for future work.
Název v anglickém jazyce
Predictions of Network Attacks in Collaborative Environment
Popis výsledku anglicky
This paper is a digest of the thesis on predicting cyber attacks in a collaborative environment. While previous works mostly focused on predicting attacks as seen from a single observation point, we proposed taking advantage of collaboration and exchange of intrusion detection alerts among organizations and networks. Thus, we can observe the cyber attack on a large scale and predict the next action of an adversary and its target. The thesis follows the three levels of cyber situational awareness: perception, comprehension, and projection. In the perception phase, we discuss the improvements of intrusion detection systems that allow for sharing intrusion detection alerts and their correlation. In the comprehension phase, we employed data mining to discover frequent attack patterns. In the projection phase, we present the analytical framework for the predictive analysis of the alerts backed by data mining and contemporary data processing approaches. The results are shown from experimental evaluation in the security alert sharing platform SABU, where real-world alerts from Czech academic and commercial networks are shared. The thesis is accompanied by the implementation of the analytical framework and a dataset that provides a baseline for future work.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium
ISBN
9781728149738
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
Budapest, Hungary
Místo konání akce
Budapest
Datum konání akce
20. 4. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—