Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Predictions of Network Attacks in Collaborative Environment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F20%3A00115348" target="_blank" >RIV/00216224:14610/20:00115348 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/NOMS47738.2020.9110261" target="_blank" >http://dx.doi.org/10.1109/NOMS47738.2020.9110261</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/NOMS47738.2020.9110261" target="_blank" >10.1109/NOMS47738.2020.9110261</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Predictions of Network Attacks in Collaborative Environment

  • Popis výsledku v původním jazyce

    This paper is a digest of the thesis on predicting cyber attacks in a collaborative environment. While previous works mostly focused on predicting attacks as seen from a single observation point, we proposed taking advantage of collaboration and exchange of intrusion detection alerts among organizations and networks. Thus, we can observe the cyber attack on a large scale and predict the next action of an adversary and its target. The thesis follows the three levels of cyber situational awareness: perception, comprehension, and projection. In the perception phase, we discuss the improvements of intrusion detection systems that allow for sharing intrusion detection alerts and their correlation. In the comprehension phase, we employed data mining to discover frequent attack patterns. In the projection phase, we present the analytical framework for the predictive analysis of the alerts backed by data mining and contemporary data processing approaches. The results are shown from experimental evaluation in the security alert sharing platform SABU, where real-world alerts from Czech academic and commercial networks are shared. The thesis is accompanied by the implementation of the analytical framework and a dataset that provides a baseline for future work.

  • Název v anglickém jazyce

    Predictions of Network Attacks in Collaborative Environment

  • Popis výsledku anglicky

    This paper is a digest of the thesis on predicting cyber attacks in a collaborative environment. While previous works mostly focused on predicting attacks as seen from a single observation point, we proposed taking advantage of collaboration and exchange of intrusion detection alerts among organizations and networks. Thus, we can observe the cyber attack on a large scale and predict the next action of an adversary and its target. The thesis follows the three levels of cyber situational awareness: perception, comprehension, and projection. In the perception phase, we discuss the improvements of intrusion detection systems that allow for sharing intrusion detection alerts and their correlation. In the comprehension phase, we employed data mining to discover frequent attack patterns. In the projection phase, we present the analytical framework for the predictive analysis of the alerts backed by data mining and contemporary data processing approaches. The results are shown from experimental evaluation in the security alert sharing platform SABU, where real-world alerts from Czech academic and commercial networks are shared. The thesis is accompanied by the implementation of the analytical framework and a dataset that provides a baseline for future work.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000822" target="_blank" >EF16_019/0000822: Centrum excelence pro kyberkriminalitu, kyberbezpečnost a ochranu kritických informačních infrastruktur</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    NOMS 2020 - 2020 IEEE/IFIP Network Operations and Management Symposium

  • ISBN

    9781728149738

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    1-6

  • Název nakladatele

    IEEE

  • Místo vydání

    Budapest, Hungary

  • Místo konání akce

    Budapest

  • Datum konání akce

    20. 4. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku