Towards Predicting Cyber Attacks Using Information Exchange and Data Mining
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F18%3A00106887" target="_blank" >RIV/00216224:14610/18:00106887 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8450512/" target="_blank" >https://ieeexplore.ieee.org/document/8450512/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/IWCMC.2018.8450512" target="_blank" >10.1109/IWCMC.2018.8450512</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Towards Predicting Cyber Attacks Using Information Exchange and Data Mining
Popis výsledku v původním jazyce
In this paper, we present an empirical evaluation of an approach to predict attacker's activities based on information exchange and data mining. We gathered the cyber security alerts shared within the SABU platform, in which around 220,000 alerts from heterogeneous geographically distributed sensors (intrusion detection systems and honeypots) are shared every day. Subsequently, we used the methods of sequential rule mining to identify common attack patterns and to derive rules for predicting attacks. As we illustrate in this paper, a collaborative environment allows attack prediction in multiple dimensions. First, we can predict what will the attacker do next and when. Second, we can predict where will the attack hit, e.g., when an attacker is targeting several networks at once. In a week-long experiment, we processed in total over 1 million alerts, from which we mined predictive rules every day. Our findings show that most of the rules display stable values of support and confidence and, thus, can be used to predict cyber attacks in consecutive days after mining without a need to actualize the rules every day.
Název v anglickém jazyce
Towards Predicting Cyber Attacks Using Information Exchange and Data Mining
Popis výsledku anglicky
In this paper, we present an empirical evaluation of an approach to predict attacker's activities based on information exchange and data mining. We gathered the cyber security alerts shared within the SABU platform, in which around 220,000 alerts from heterogeneous geographically distributed sensors (intrusion detection systems and honeypots) are shared every day. Subsequently, we used the methods of sequential rule mining to identify common attack patterns and to derive rules for predicting attacks. As we illustrate in this paper, a collaborative environment allows attack prediction in multiple dimensions. First, we can predict what will the attacker do next and when. Second, we can predict where will the attack hit, e.g., when an attacker is targeting several networks at once. In a week-long experiment, we processed in total over 1 million alerts, from which we mined predictive rules every day. Our findings show that most of the rules display stable values of support and confidence and, thus, can be used to predict cyber attacks in consecutive days after mining without a need to actualize the rules every day.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20162019029" target="_blank" >VI20162019029: Sdílení a analýza bezpečnostních událostí v ČR</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC)
ISBN
9781538620700
ISSN
2376-6492
e-ISSN
—
Počet stran výsledku
6
Strana od-do
536-541
Název nakladatele
IEEE
Místo vydání
Limassol
Místo konání akce
Limassol
Datum konání akce
25. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000447259500091