On the Sequential Pattern and Rule Mining in the Analysis of Cyber Security Alerts
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F17%3A00094473" target="_blank" >RIV/00216224:14610/17:00094473 - isvavai.cz</a>
Výsledek na webu
<a href="https://dl.acm.org/citation.cfm?doid=3098954.3098981" target="_blank" >https://dl.acm.org/citation.cfm?doid=3098954.3098981</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3098954.3098981" target="_blank" >10.1145/3098954.3098981</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Sequential Pattern and Rule Mining in the Analysis of Cyber Security Alerts
Popis výsledku v původním jazyce
Data mining is well-known for its ability to extract concealed and indistinct patterns in the data, which is a common task in the field of cyber security. However, data mining is not always used to its full potential among cyber security community. In this paper, we discuss usability of sequential pattern and rule mining, a subset of data mining methods, in an analysis of cyber security alerts. First, we survey the use case of data mining, namely alert correlation and attack prediction. Subsequently, we evaluate sequential pattern and rule mining methods to find the one that is both fast and provides valuable results while dealing with the peculiarities of security alerts. An experiment was performed using the dataset of real alerts from an alert sharing platform. Finally, we present lessons learned from the experiment and a comparison of the selected methods based on their performance and soundness of the results.
Název v anglickém jazyce
On the Sequential Pattern and Rule Mining in the Analysis of Cyber Security Alerts
Popis výsledku anglicky
Data mining is well-known for its ability to extract concealed and indistinct patterns in the data, which is a common task in the field of cyber security. However, data mining is not always used to its full potential among cyber security community. In this paper, we discuss usability of sequential pattern and rule mining, a subset of data mining methods, in an analysis of cyber security alerts. First, we survey the use case of data mining, namely alert correlation and attack prediction. Subsequently, we evaluate sequential pattern and rule mining methods to find the one that is both fast and provides valuable results while dealing with the peculiarities of security alerts. An experiment was performed using the dataset of real alerts from an alert sharing platform. Finally, we present lessons learned from the experiment and a comparison of the selected methods based on their performance and soundness of the results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/VI20162019029" target="_blank" >VI20162019029: Sdílení a analýza bezpečnostních událostí v ČR</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 12th International Conference on Availability, Reliability and Security
ISBN
9781450352574
ISSN
—
e-ISSN
—
Počet stran výsledku
10
Strana od-do
„22:1“-„22:10“
Název nakladatele
ACM
Místo vydání
Reggio Calabria
Místo konání akce
Reggio Calabria
Datum konání akce
29. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426964900022