Design of an Unsupervised Machine Learning-Based Movie Recommender System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F20%3A00139250" target="_blank" >RIV/00216224:14610/20:00139250 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26220/20:PU134917
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/12/2/185" target="_blank" >https://www.mdpi.com/2073-8994/12/2/185</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym12020185" target="_blank" >10.3390/sym12020185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of an Unsupervised Machine Learning-Based Movie Recommender System
Popis výsledku v původním jazyce
This research aims to determine the similarities in groups of people to build a film recommender system for users. Users often have difficulty in finding suitable movies due to the increasing amount of movie information. The recommender system is very useful for helping customers choose a preferred movie with the existing features. In this study, the recommender system development is established by using several algorithms to obtain groupings, such as the K-Means algorithm, birch algorithm, mini-batch K-Means algorithm, mean-shift algorithm, affinity propagation algorithm, agglomerative clustering algorithm, and spectral clustering algorithm. We propose methods optimizing K so that each cluster may not significantly increase variance. We are limited to using groupings based on Genre and Tags for movies. This research can discover better methods for evaluating clustering algorithms. To verify the quality of the recommender system, we adopted the mean square error (MSE), such as the Dunn Matrix and Cluster Validity Indices, and social network analysis (SNA), such as Degree Centrality, Closeness Centrality, and Betweenness Centrality. We also used average similarity, computational time, association rule with Apriori algorithm, and clustering performance evaluation as evaluation measures to compare method performance of recommender systems using Silhouette Coefficient, Calinski-Harabaz Index, and Davies-Bouldin Index.
Název v anglickém jazyce
Design of an Unsupervised Machine Learning-Based Movie Recommender System
Popis výsledku anglicky
This research aims to determine the similarities in groups of people to build a film recommender system for users. Users often have difficulty in finding suitable movies due to the increasing amount of movie information. The recommender system is very useful for helping customers choose a preferred movie with the existing features. In this study, the recommender system development is established by using several algorithms to obtain groupings, such as the K-Means algorithm, birch algorithm, mini-batch K-Means algorithm, mean-shift algorithm, affinity propagation algorithm, agglomerative clustering algorithm, and spectral clustering algorithm. We propose methods optimizing K so that each cluster may not significantly increase variance. We are limited to using groupings based on Genre and Tags for movies. This research can discover better methods for evaluating clustering algorithms. To verify the quality of the recommender system, we adopted the mean square error (MSE), such as the Dunn Matrix and Cluster Validity Indices, and social network analysis (SNA), such as Degree Centrality, Closeness Centrality, and Betweenness Centrality. We also used average similarity, computational time, association rule with Apriori algorithm, and clustering performance evaluation as evaluation measures to compare method performance of recommender systems using Silhouette Coefficient, Calinski-Harabaz Index, and Davies-Bouldin Index.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SYMMETRY-BASEL
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
12
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
000521147600054
EID výsledku v databázi Scopus
2-s2.0-85080919258