Movie Recommender Systems: Concepts, Methods, Challenges, and Future Directions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250026" target="_blank" >RIV/61989100:27230/22:10250026 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000823874200001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000823874200001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s22134904" target="_blank" >10.3390/s22134904</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Movie Recommender Systems: Concepts, Methods, Challenges, and Future Directions
Popis výsledku v původním jazyce
Movie recommender systems are meant to give suggestions to the users based on the features they love the most. A highly performing movie recommendation will suggest movies that match the similarities with the highest degree of performance. This study conducts a systematic literature review on movie recommender systems. It highlights the filtering criteria in the recommender systems, algorithms implemented in movie recommender systems, the performance measurement criteria, the challenges in implementation, and recommendations for future research. Some of the most popular machine learning algorithms used in movie recommender systems such as K-means clustering, principal component analysis, and self-organizing maps with principal component analysis are discussed in detail. Special emphasis is given to research works performed using metaheuristic-based recommendation systems. The research aims to bring to light the advances made in developing the movie recommender systems, and what needs to be performed to reduce the current challenges in implementing the feasible solutions. The article will be helpful to researchers in the broad area of recommender systems as well as practicing data scientists involved in the implementation of such systems. (C) 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Název v anglickém jazyce
Movie Recommender Systems: Concepts, Methods, Challenges, and Future Directions
Popis výsledku anglicky
Movie recommender systems are meant to give suggestions to the users based on the features they love the most. A highly performing movie recommendation will suggest movies that match the similarities with the highest degree of performance. This study conducts a systematic literature review on movie recommender systems. It highlights the filtering criteria in the recommender systems, algorithms implemented in movie recommender systems, the performance measurement criteria, the challenges in implementation, and recommendations for future research. Some of the most popular machine learning algorithms used in movie recommender systems such as K-means clustering, principal component analysis, and self-organizing maps with principal component analysis are discussed in detail. Special emphasis is given to research works performed using metaheuristic-based recommendation systems. The research aims to bring to light the advances made in developing the movie recommender systems, and what needs to be performed to reduce the current challenges in implementing the feasible solutions. The article will be helpful to researchers in the broad area of recommender systems as well as practicing data scientists involved in the implementation of such systems. (C) 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20300 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Sensors
ISSN
1424-3210
e-ISSN
1424-8220
Svazek periodika
22
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
22
Strana od-do
nestrankovano
Kód UT WoS článku
000823874200001
EID výsledku v databázi Scopus
2-s2.0-85133024440