Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Integrating multi-criteria decision-making with hybrid deep learning for sentiment analysis in recommender systems

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18470%2F23%3A50020616" target="_blank" >RIV/62690094:18470/23:50020616 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://peerj.com/articles/cs-1497/" target="_blank" >https://peerj.com/articles/cs-1497/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.7717/peerj-cs.1497" target="_blank" >10.7717/peerj-cs.1497</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Integrating multi-criteria decision-making with hybrid deep learning for sentiment analysis in recommender systems

  • Popis výsledku v původním jazyce

    Expert assessments with pre-defined numerical or language terms can limit the scope of decision-making models. We propose that decision-making models can incorporate expert judgments expressed in natural language through sentiment analysis. To help make more informed choices, we present the Sentiment Analysis in Recommender Systems with Multi-person, Multi-criteria Decision Making (SAR-MCMD) method. This method compiles the opinions of several experts by analyzing their written reviews and, if applicable, their star ratings. The growth of online applications and the sheer amount of available information have made it difficult for users to decide which information or products to select from the Internet. Intelligent decision-support technologies, known as recommender systems, leverage users&apos; preferences to suggest what they might find interesting. Recommender systems are one of the many approaches to dealing with information overload issues. These systems have traditionally relied on single-grading algorithms to predict and communicate users&apos; opinions for observed items. To boost their predictive and recommendation abilities, multi-criteria recommender systems assign numerous ratings to various qualities of products. We created, manually annotated, and released the technique in a case study of restaurant selection using &apos;TripAdvisor reviews&apos;, &apos;TMDB 5000 movies&apos;, and an &apos;Amazon dataset&apos;. In various areas, cutting-edge deep learning approaches have led to breakthrough progress. Recently, researchers have begun to focus on applying these methods to recommendation systems, and different deep learning-based recommendation models have been suggested. Due to its proficiency with sparse data in large data systems and its ability to construct complex models that characterize user performance for the recommended procedure, deep learning is a formidable tool. In this article, we introduce a model for a multi-criteria recommender system that combines the best of both deep learning and multi-criteria decision-making. According to our findings, the suggested system may give customers very accurate suggestions with a sentiment analysis accuracy of 98%. Additionally, the metrics, accuracy, precision, recall, and F1 score are where the system truly shines, much above what has been achieved in the past.

  • Název v anglickém jazyce

    Integrating multi-criteria decision-making with hybrid deep learning for sentiment analysis in recommender systems

  • Popis výsledku anglicky

    Expert assessments with pre-defined numerical or language terms can limit the scope of decision-making models. We propose that decision-making models can incorporate expert judgments expressed in natural language through sentiment analysis. To help make more informed choices, we present the Sentiment Analysis in Recommender Systems with Multi-person, Multi-criteria Decision Making (SAR-MCMD) method. This method compiles the opinions of several experts by analyzing their written reviews and, if applicable, their star ratings. The growth of online applications and the sheer amount of available information have made it difficult for users to decide which information or products to select from the Internet. Intelligent decision-support technologies, known as recommender systems, leverage users&apos; preferences to suggest what they might find interesting. Recommender systems are one of the many approaches to dealing with information overload issues. These systems have traditionally relied on single-grading algorithms to predict and communicate users&apos; opinions for observed items. To boost their predictive and recommendation abilities, multi-criteria recommender systems assign numerous ratings to various qualities of products. We created, manually annotated, and released the technique in a case study of restaurant selection using &apos;TripAdvisor reviews&apos;, &apos;TMDB 5000 movies&apos;, and an &apos;Amazon dataset&apos;. In various areas, cutting-edge deep learning approaches have led to breakthrough progress. Recently, researchers have begun to focus on applying these methods to recommendation systems, and different deep learning-based recommendation models have been suggested. Due to its proficiency with sparse data in large data systems and its ability to construct complex models that characterize user performance for the recommended procedure, deep learning is a formidable tool. In this article, we introduce a model for a multi-criteria recommender system that combines the best of both deep learning and multi-criteria decision-making. According to our findings, the suggested system may give customers very accurate suggestions with a sentiment analysis accuracy of 98%. Additionally, the metrics, accuracy, precision, recall, and F1 score are where the system truly shines, much above what has been achieved in the past.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    PeerJ Computer Science

  • ISSN

    2376-5992

  • e-ISSN

    2376-5992

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    082023

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    27

  • Strana od-do

    "Article number: e1497"

  • Kód UT WoS článku

    001052600400001

  • EID výsledku v databázi Scopus