Improvement Graph Convolution Collaborative Filtering with Weighted Addition Input
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10251993" target="_blank" >RIV/61989100:27240/22:10251993 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-21743-2_51" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-21743-2_51</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-21743-2_51" target="_blank" >10.1007/978-3-031-21743-2_51</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Improvement Graph Convolution Collaborative Filtering with Weighted Addition Input
Popis výsledku v původním jazyce
Graph Neural Networks have been extensively applied in the field of machine learning to find features of graphs, and recommendation systems are no exception. The ratings of users on considered items can be represented by graphs which are input for many efficient models to find out the characteristics of the users and the items. From these insights, relevant items are recommended to users. However, user's decisions on the items have varying degrees of effects on different users, and this information should be learned so as not to be lost in the process of information mining. In this publication, we propose to build an additional graph showing the recommended weight of an item to a target user to improve the accuracy of GNN models. Although the users' friendships were not recorded, their correlation was still evident through the commonalities in consumption behavior. We build a model WiGCN (Weighted input GCN) to describe and experiment on well-known datasets. Conclusions will be stated after comparing our results with state-of-the-art such as GCMC, NGCF and LightGCN. The source code is also included (https://github.com/trantin84/WiGCN).
Název v anglickém jazyce
Improvement Graph Convolution Collaborative Filtering with Weighted Addition Input
Popis výsledku anglicky
Graph Neural Networks have been extensively applied in the field of machine learning to find features of graphs, and recommendation systems are no exception. The ratings of users on considered items can be represented by graphs which are input for many efficient models to find out the characteristics of the users and the items. From these insights, relevant items are recommended to users. However, user's decisions on the items have varying degrees of effects on different users, and this information should be learned so as not to be lost in the process of information mining. In this publication, we propose to build an additional graph showing the recommended weight of an item to a target user to improve the accuracy of GNN models. Although the users' friendships were not recorded, their correlation was still evident through the commonalities in consumption behavior. We build a model WiGCN (Weighted input GCN) to describe and experiment on well-known datasets. Conclusions will be stated after comparing our results with state-of-the-art such as GCMC, NGCF and LightGCN. The source code is also included (https://github.com/trantin84/WiGCN).
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2022, PT I
ISBN
978-3-031-21742-5
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
13
Strana od-do
635-647
Název nakladatele
SPRINGER INTERNATIONAL PUBLISHING AG
Místo vydání
CHAM
Místo konání akce
Ho Chi Minh City
Datum konání akce
28. 11. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000917075200050