Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F21%3A00123013" target="_blank" >RIV/00216224:14610/21:00123013 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352340921009069" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352340921009069</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dib.2021.107631" target="_blank" >10.1016/j.dib.2021.107631</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures
Popis výsledku v původním jazyce
We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance. Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way. During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research.
Název v anglickém jazyce
Searching CUDA code autotuning spaces with hardware performance counters: data from benchmarks running on various GPU architectures
Popis výsledku anglicky
We have developed several autotuning benchmarks in CUDA that take into account performance-relevant source-code parameters and reach near peak-performance on various GPU architectures. We have used them during the development and evaluation of a search method for tuning space proposed in [1]. With our framework Kernel Tuning Toolkit, freely available at Github, we measured computation times and hardware performance counters on several GPUs for the complete tuning spaces of five benchmarks. These data, which we provide here, might benefit research of search algorithms for the tuning spaces of GPU codes or research of relation between applied code optimization, hardware performance counters, and GPU kernels’ performance. Moreover, we describe the scripts we used for robust evaluation of our searcher and comparison to others in detail. In particular, the script that simulates the tuning, i.e., replaces time-demanding compiling and executing the tuned kernels with a quick reading of the computation time from our measured data, makes it possible to inspect the convergence of tuning search over a large number of experiments. These scripts, freely available with our other codes, make it easier to experiment with search algorithms and compare them in a robust and reproducible way. During our research, we generated models for predicting values of performance counters from values of tuning parameters of our benchmarks. Here, we provide the models themselves and describe the scripts we implemented for their training. These data might benefit researchers who want to reproduce or build on our research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Data in Brief
ISSN
2352-3409
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
December
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
1-12
Kód UT WoS článku
000725561900057
EID výsledku v databázi Scopus
2-s2.0-85101952751