Lightweight Distributed Provenance Model for Complex Real–world Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F22%3A00126457" target="_blank" >RIV/00216224:14610/22:00126457 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1038/s41597-022-01537-6" target="_blank" >https://doi.org/10.1038/s41597-022-01537-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41597-022-01537-6" target="_blank" >10.1038/s41597-022-01537-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Lightweight Distributed Provenance Model for Complex Real–world Environments
Popis výsledku v původním jazyce
Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains. Dependant on the actual provenance content, complete provenance chains can provide traceability and contribute to reproducibility and FAIRness of research objects. In this paper, we define a lightweight provenance model based on W3C PROV that enables generation of distributed provenance chains in complex, multi-organizational environments. The application of the model is demonstrated with a use case spanning several steps of a real-world research pipeline — starting with the acquisition of a specimen, its processing and storage, histological examination, and the generation/collection of associated data (images, annotations, clinical data), ending with training an AI model for the detection of tumor in the images. The proposed model has become an open conceptual foundation of the currently developed ISO 23494 standard on provenance for biotechnology domain.
Název v anglickém jazyce
Lightweight Distributed Provenance Model for Complex Real–world Environments
Popis výsledku anglicky
Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains. Dependant on the actual provenance content, complete provenance chains can provide traceability and contribute to reproducibility and FAIRness of research objects. In this paper, we define a lightweight provenance model based on W3C PROV that enables generation of distributed provenance chains in complex, multi-organizational environments. The application of the model is demonstrated with a use case spanning several steps of a real-world research pipeline — starting with the acquisition of a specimen, its processing and storage, histological examination, and the generation/collection of associated data (images, annotations, clinical data), ending with training an AI model for the detection of tumor in the images. The proposed model has become an open conceptual foundation of the currently developed ISO 23494 standard on provenance for biotechnology domain.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Scientific Data
ISSN
2052-4463
e-ISSN
—
Svazek periodika
2022
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
19
Strana od-do
1-19
Kód UT WoS článku
000842397500003
EID výsledku v databázi Scopus
2-s2.0-85136068732