On the Provision of Network-Wide Cyber Situational Awareness via Graph-Based Analytics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F23%3A00130688" target="_blank" >RIV/00216224:14610/23:00130688 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-44355-8_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-44355-8_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-44355-8_12" target="_blank" >10.1007/978-3-031-44355-8_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the Provision of Network-Wide Cyber Situational Awareness via Graph-Based Analytics
Popis výsledku v původním jazyce
In this paper, we posit how semi-static (i.e., not changing very often) complex computer network-based intelligence using graphbased analytics can become enablers of Cyber Situational Awareness (CSA) (i.e., perception, comprehension, and projection of situations in a cyber environment). A plethora of newly surfaced cyber security researchers have used graph-based analytics to facilitate particular down tasks in dynamic complex cyber environments. This includes graph-, node- and edge-level detection, classification, and others (e.g., credit card fraudulent transactions as an edge classification problem). To the best of our knowledge, very limited efforts have consolidated the outputs of heterogeneous computer network monitoring and reconnaissance tools (e.g., Nmap) in enabling actionable CSA. As such, in this work, we address this literature gap while describing several use cases of graph traversal, graph measures, and subgraph mining in vulnerability and security state assessment, attack projection and mitigation, and device criticality estimation. We highlight the benefits of the graph-based approaches compared to traditional methods. Finally, we postulate open research and application challenges in graph-based analytics for CSA to prompt promising research directions and operational capabilities.
Název v anglickém jazyce
On the Provision of Network-Wide Cyber Situational Awareness via Graph-Based Analytics
Popis výsledku anglicky
In this paper, we posit how semi-static (i.e., not changing very often) complex computer network-based intelligence using graphbased analytics can become enablers of Cyber Situational Awareness (CSA) (i.e., perception, comprehension, and projection of situations in a cyber environment). A plethora of newly surfaced cyber security researchers have used graph-based analytics to facilitate particular down tasks in dynamic complex cyber environments. This includes graph-, node- and edge-level detection, classification, and others (e.g., credit card fraudulent transactions as an edge classification problem). To the best of our knowledge, very limited efforts have consolidated the outputs of heterogeneous computer network monitoring and reconnaissance tools (e.g., Nmap) in enabling actionable CSA. As such, in this work, we address this literature gap while describing several use cases of graph traversal, graph measures, and subgraph mining in vulnerability and security state assessment, attack projection and mitigation, and device criticality estimation. We highlight the benefits of the graph-based approaches compared to traditional methods. Finally, we postulate open research and application challenges in graph-based analytics for CSA to prompt promising research directions and operational capabilities.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_010%2F0003229" target="_blank" >EH22_010/0003229: MSCAfellow5_MUNI</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Complex Computational Ecosystems
ISBN
9783031443541
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
13
Strana od-do
167-179
Název nakladatele
Springer Nature
Místo vydání
Cham, Switzerland
Místo konání akce
Baku
Datum konání akce
25. 4. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—