Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14610%2F23%3A00131054" target="_blank" >RIV/00216224:14610/23:00131054 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s00607-023-01190-w" target="_blank" >https://doi.org/10.1007/s00607-023-01190-w</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00607-023-01190-w" target="_blank" >10.1007/s00607-023-01190-w</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes
Popis výsledku v původním jazyce
Modern computers are typically heterogeneous devices—besides the standard central processing unit (CPU), they commonly include an accelerator such as a graphics processing unit (GPU). However, exploiting the full potential of such computers is challenging, especially when complex workloads consisting of multiple computationally demanding tasks are to be processed. This paper proposes a framework called Umpalumpa, which aims to manage complex workloads on heterogeneous computers. Umpalumpa combines three aspects that ease programming and optimize code performance. Firstly, it implements a data-centric design, where data are described by their physical properties (e. g., location in memory, size) and logical properties (e. g., dimensionality, shape, padding). Secondly, Umpalumpa utilizes task-based parallelism to schedule tasks on heterogeneous nodes. Thirdly, tasks can be dynamically autotuned on a source code level according to the hardware where the task is executed and the processed data. Altogether, Umpalumpa allows for implementing a complex workload, which is automatically executed on CPUs and accelerators, and allows autotuning to maximize the performance with the given hardware and data input. Umpalumpa focuses on image processing workloads, but the concept is generic and can be extended to different types of workloads. We demonstrate the usability of the proposed framework on two previously accelerated applications from cryogenic electron microscopy: 3D Fourier reconstruction and Movie alignment. We show that, compared to the original implementations, Umpalumpa reduces the complexity and improves the maintainability of the main applications’ loops while improving performance through automatic memory management and autotuning of the GPU kernels.
Název v anglickém jazyce
Umpalumpa: a framework for efficient execution of complex image processing workloads on heterogeneous nodes
Popis výsledku anglicky
Modern computers are typically heterogeneous devices—besides the standard central processing unit (CPU), they commonly include an accelerator such as a graphics processing unit (GPU). However, exploiting the full potential of such computers is challenging, especially when complex workloads consisting of multiple computationally demanding tasks are to be processed. This paper proposes a framework called Umpalumpa, which aims to manage complex workloads on heterogeneous computers. Umpalumpa combines three aspects that ease programming and optimize code performance. Firstly, it implements a data-centric design, where data are described by their physical properties (e. g., location in memory, size) and logical properties (e. g., dimensionality, shape, padding). Secondly, Umpalumpa utilizes task-based parallelism to schedule tasks on heterogeneous nodes. Thirdly, tasks can be dynamically autotuned on a source code level according to the hardware where the task is executed and the processed data. Altogether, Umpalumpa allows for implementing a complex workload, which is automatically executed on CPUs and accelerators, and allows autotuning to maximize the performance with the given hardware and data input. Umpalumpa focuses on image processing workloads, but the concept is generic and can be extended to different types of workloads. We demonstrate the usability of the proposed framework on two previously accelerated applications from cryogenic electron microscopy: 3D Fourier reconstruction and Movie alignment. We show that, compared to the original implementations, Umpalumpa reduces the complexity and improves the maintainability of the main applications’ loops while improving performance through automatic memory management and autotuning of the GPU kernels.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018140" target="_blank" >LM2018140: e-Infrastruktura CZ</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computing
ISSN
0010-485X
e-ISSN
1436-5057
Svazek periodika
105
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
AT - Rakouská republika
Počet stran výsledku
29
Strana od-do
2389-2417
Kód UT WoS článku
001010699200001
EID výsledku v databázi Scopus
2-s2.0-85161984169