Computational fluid dynamics-based design of a microfabricated cell capture device.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F15%3A00082639" target="_blank" >RIV/00216224:14740/15:00082639 - isvavai.cz</a>
Výsledek na webu
<a href="http://chromsci.oxfordjournals.org/content/53/3/411.long" target="_blank" >http://chromsci.oxfordjournals.org/content/53/3/411.long</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/chromsci/bmu110" target="_blank" >10.1093/chromsci/bmu110</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational fluid dynamics-based design of a microfabricated cell capture device.
Popis výsledku v původním jazyce
A microfluidic cell capture device was designed, fabricated, evaluated by numerical simulations and validated experimentally. The cell capture device was designed with a minimal footprint compartment comprising internal micropillars with the goal to obtain a compact, integrated bioanalytical system. The design of the device was accomplished by computational fluid dynamics (CFD) simulations. Various microdevice designs were rapidly prototyped in poly-dimethylsiloxane using conventional soft lithograpy technique applying micropatterned SU-8 epoxy based negative photoresist as moulding replica. The numerically modeled flow characteristics of the cell capture device were experimentally validated by tracing and microscopic recording the flow trajectories using yeast cells. Finally, we give some perspectives on how CFD modeling can be used in the early stage of microfluidics-based cell capture device development.
Název v anglickém jazyce
Computational fluid dynamics-based design of a microfabricated cell capture device.
Popis výsledku anglicky
A microfluidic cell capture device was designed, fabricated, evaluated by numerical simulations and validated experimentally. The cell capture device was designed with a minimal footprint compartment comprising internal micropillars with the goal to obtain a compact, integrated bioanalytical system. The design of the device was accomplished by computational fluid dynamics (CFD) simulations. Various microdevice designs were rapidly prototyped in poly-dimethylsiloxane using conventional soft lithograpy technique applying micropatterned SU-8 epoxy based negative photoresist as moulding replica. The numerically modeled flow characteristics of the cell capture device were experimentally validated by tracing and microscopic recording the flow trajectories using yeast cells. Finally, we give some perspectives on how CFD modeling can be used in the early stage of microfluidics-based cell capture device development.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CB - Analytická chemie, separace
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/EE2.3.30.0037" target="_blank" >EE2.3.30.0037: Zaměstnáním nejlepších mladých vědců k rozvoji mezinárodní spolupráce</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Chromatographic Science
ISSN
0021-9665
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
411-416
Kód UT WoS článku
000354695600004
EID výsledku v databázi Scopus
—