Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

TDP-43 forms a functional dimer interface upon UG-rich RNA binding leading to aberrant CFTR exon 9 splicing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F17%3A00113362" target="_blank" >RIV/00216224:14740/17:00113362 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://2017.febscongress.org/abstract_preview.aspx?idAbstractEnc=4424170096100095091424170" target="_blank" >https://2017.febscongress.org/abstract_preview.aspx?idAbstractEnc=4424170096100095091424170</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    TDP-43 forms a functional dimer interface upon UG-rich RNA binding leading to aberrant CFTR exon 9 splicing

  • Popis výsledku v původním jazyce

    Alternative pre­mRNA splicing plays a key role in creating the vast number of gene products underlying our complex organism. Processing of pre­mRNAs is tightly regulated and imbalances can change the outcome of gene expression often leading to disease. TAR DNA­binding protein (TDP­43) inhibits splicing of exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is associated with severe forms of cystic fibrosis. Mutations in the 3’ splice site (3’ss) of CFTR exon 9 causing extension of a UG­rich region and polypyrimidine tract shortening, create a high affinity binding site for TDP­43. Upon RNA binding, TDP­43 recruits hnRNPA1 and thus formed complex prevents the recognition of the 3’ss of exon 9 by the spliceosomal machinery causing exon 9 skipping and subsequent production of a non­functional CFTR protein. Although RNA recognition and binding by TDP­43 alone and in complex with other hnRNPs has numerous functional implications, molecular details of such interactions remained elusive. Our structural studies combined with biophysical approaches reveal that two copies of TDP­43 create a new protein­protein interface with a salt bridge upon binding to the extended UG­rich sequence. Site­directed mutagenesis of amino acids involved in salt bridge formation reveals the functional significance of the protein­protein interface. Unexpectedly, mutations at the interaction site of the two TDP­43 copies reduce exon 9 skipping almost to the same extent as completely abolishing UG­rich RNA binding. Furthermore, this complex recruits two copies of hnRNP A1 to the 3’ss which blocks access of the canonical factor U2AF35 while U2AF65 binding is weakened because of polypyrimidine tract shortening. Thus TDP­43 and hnRNP A1 form a network of functional RNA­protein and protein­protein interactions which competes for the formation of the canonical splicing complex thereby driving CFTR exon 9 skipping

  • Název v anglickém jazyce

    TDP-43 forms a functional dimer interface upon UG-rich RNA binding leading to aberrant CFTR exon 9 splicing

  • Popis výsledku anglicky

    Alternative pre­mRNA splicing plays a key role in creating the vast number of gene products underlying our complex organism. Processing of pre­mRNAs is tightly regulated and imbalances can change the outcome of gene expression often leading to disease. TAR DNA­binding protein (TDP­43) inhibits splicing of exon 9 of the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which is associated with severe forms of cystic fibrosis. Mutations in the 3’ splice site (3’ss) of CFTR exon 9 causing extension of a UG­rich region and polypyrimidine tract shortening, create a high affinity binding site for TDP­43. Upon RNA binding, TDP­43 recruits hnRNPA1 and thus formed complex prevents the recognition of the 3’ss of exon 9 by the spliceosomal machinery causing exon 9 skipping and subsequent production of a non­functional CFTR protein. Although RNA recognition and binding by TDP­43 alone and in complex with other hnRNPs has numerous functional implications, molecular details of such interactions remained elusive. Our structural studies combined with biophysical approaches reveal that two copies of TDP­43 create a new protein­protein interface with a salt bridge upon binding to the extended UG­rich sequence. Site­directed mutagenesis of amino acids involved in salt bridge formation reveals the functional significance of the protein­protein interface. Unexpectedly, mutations at the interaction site of the two TDP­43 copies reduce exon 9 skipping almost to the same extent as completely abolishing UG­rich RNA binding. Furthermore, this complex recruits two copies of hnRNP A1 to the 3’ss which blocks access of the canonical factor U2AF35 while U2AF65 binding is weakened because of polypyrimidine tract shortening. Thus TDP­43 and hnRNP A1 form a network of functional RNA­protein and protein­protein interactions which competes for the formation of the canonical splicing complex thereby driving CFTR exon 9 skipping

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    10608 - Biochemistry and molecular biology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LQ1601" target="_blank" >LQ1601: CEITEC 2020</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů