In Silico Study of (Mn, Fe, Co, Ni, Zn)-BTC Metal-Organic Frameworks for Recovering Xenon from Exhaled Anesthetic Gas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00103767" target="_blank" >RIV/00216224:14740/18:00103767 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1021/acssuschemeng.8b03475" target="_blank" >http://dx.doi.org/10.1021/acssuschemeng.8b03475</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acssuschemeng.8b03475" target="_blank" >10.1021/acssuschemeng.8b03475</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
In Silico Study of (Mn, Fe, Co, Ni, Zn)-BTC Metal-Organic Frameworks for Recovering Xenon from Exhaled Anesthetic Gas
Popis výsledku v původním jazyce
Xenon is considered a great inhalation anesthetic gas. However, its world-wide usage is limited because of its shortage and to that related high price. Advanced materials, such as metal-organic frameworks (MOFs), used to recover xenon from an exhaled anesthetic gas may open new opportunities and, consequently, result in reduced anesthetic costs. We used state-of-the-art atomistic simulations to investigate five analogs of well-known Cu-BTC MOF and unearthed their potential for being used not only in recovering xenon from exhaled anesthetic gas but also for designing new MOFs for this application. We demonstrate the performance of designed materials by simulating single- and multi-component adsorption isotherms as well as separation factors such as selectivity, working capacity, and adsorbent performance indicator. In addition, we predict boosting the applicability of selected MOFs through affordable lowering of operation temperature.
Název v anglickém jazyce
In Silico Study of (Mn, Fe, Co, Ni, Zn)-BTC Metal-Organic Frameworks for Recovering Xenon from Exhaled Anesthetic Gas
Popis výsledku anglicky
Xenon is considered a great inhalation anesthetic gas. However, its world-wide usage is limited because of its shortage and to that related high price. Advanced materials, such as metal-organic frameworks (MOFs), used to recover xenon from an exhaled anesthetic gas may open new opportunities and, consequently, result in reduced anesthetic costs. We used state-of-the-art atomistic simulations to investigate five analogs of well-known Cu-BTC MOF and unearthed their potential for being used not only in recovering xenon from exhaled anesthetic gas but also for designing new MOFs for this application. We demonstrate the performance of designed materials by simulating single- and multi-component adsorption isotherms as well as separation factors such as selectivity, working capacity, and adsorbent performance indicator. In addition, we predict boosting the applicability of selected MOFs through affordable lowering of operation temperature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Sustainable Chemistry & Engineering
ISSN
2168-0485
e-ISSN
—
Svazek periodika
6
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
15001-15006
Kód UT WoS článku
000449577200150
EID výsledku v databázi Scopus
2-s2.0-85054724905