Computational Exploration of IRMOFs for Xenon Separation from Air
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00105237" target="_blank" >RIV/00216224:14740/18:00105237 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acsomega.8b03014" target="_blank" >https://pubs.acs.org/doi/10.1021/acsomega.8b03014</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsomega.8b03014" target="_blank" >10.1021/acsomega.8b03014</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Computational Exploration of IRMOFs for Xenon Separation from Air
Popis výsledku v původním jazyce
Metal–organic frameworks (MOFs) found their well-deserved position in the field of gas adsorption and separation because of their unique properties. The separation of xenon from different gas mixtures containing this valuable and essential noble gas is also benefited from the exciting nature of MOFs. In this research, we chose a series of isoreticular MOFs as our study models to apply advanced molecular simulation techniques in the context of xenon separation from air. We investigated the separation performance of our model set through simulation of ternary gas adsorption isotherms and consequent calculation of separation performance descriptors, finding out that IRMOF-7 shows better recovering capabilities compared to the other studied MOFs. We benefited from visualization of xenon energy landscape within MOFs to obtain valuable information on possible reasoning behind our observations. We also examined temperature-based separation performance boosting strategy. Additionally, we noted that although promising candidates are present among the studied MOFs for xenon recovery from air, they are not suitable for xenon recovery from exhaled anesthetic gas mixture.
Název v anglickém jazyce
Computational Exploration of IRMOFs for Xenon Separation from Air
Popis výsledku anglicky
Metal–organic frameworks (MOFs) found their well-deserved position in the field of gas adsorption and separation because of their unique properties. The separation of xenon from different gas mixtures containing this valuable and essential noble gas is also benefited from the exciting nature of MOFs. In this research, we chose a series of isoreticular MOFs as our study models to apply advanced molecular simulation techniques in the context of xenon separation from air. We investigated the separation performance of our model set through simulation of ternary gas adsorption isotherms and consequent calculation of separation performance descriptors, finding out that IRMOF-7 shows better recovering capabilities compared to the other studied MOFs. We benefited from visualization of xenon energy landscape within MOFs to obtain valuable information on possible reasoning behind our observations. We also examined temperature-based separation performance boosting strategy. Additionally, we noted that although promising candidates are present among the studied MOFs for xenon recovery from air, they are not suitable for xenon recovery from exhaled anesthetic gas mixture.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10406 - Analytical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2015085" target="_blank" >LM2015085: CERIT Scientific Cloud</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ACS Omega
ISSN
2470-1343
e-ISSN
2470-1343
Svazek periodika
3
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
18535-18541
Kód UT WoS článku
000458439900035
EID výsledku v databázi Scopus
2-s2.0-85059514615