Detecting T cell receptors involved in immune responses from single repertoire snapshots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F19%3A00113280" target="_blank" >RIV/00216224:14740/19:00113280 - isvavai.cz</a>
Výsledek na webu
<a href="https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000314" target="_blank" >https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000314</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pbio.3000314" target="_blank" >10.1371/journal.pbio.3000314</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Detecting T cell receptors involved in immune responses from single repertoire snapshots
Popis výsledku v původním jazyce
Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR variants associated with diseases and conditions, which can be used for diagnostics and rational vaccine design.
Název v anglickém jazyce
Detecting T cell receptors involved in immune responses from single repertoire snapshots
Popis výsledku anglicky
Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR variants associated with diseases and conditions, which can be used for diagnostics and rational vaccine design.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10608 - Biochemistry and molecular biology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
PLoS Biology
ISSN
1544-9173
e-ISSN
—
Svazek periodika
17
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000473675900034
EID výsledku v databázi Scopus
2-s2.0-85068887301