Artificial neural networks in kinetic analysis of glass crystallization: The case of complex nucleation-growth mechanisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F24%3A39922021" target="_blank" >RIV/00216275:25310/24:39922021 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0022309323006671?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0022309323006671?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jnoncrysol.2023.122802" target="_blank" >10.1016/j.jnoncrysol.2023.122802</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial neural networks in kinetic analysis of glass crystallization: The case of complex nucleation-growth mechanisms
Popis výsledku v původním jazyce
The selected artificial neural networks were trained and tested to determine the kinetics of theoretically simulated signals for two overlapping independent nucleation-growth processes. Whereas the hybrid convolutional neural network did not perform well, the multilayer perceptron (MLP) showed great potential for the kinetic analysis of complex solid-state reactions and transformation mechanisms. In particular, the MLP architecture exhibited remarkable robustness with respect to the scatter in kinetic data as well as the ability to accurately deal with practically fully overlapping kinetic peaks. When trained on a full spectrum of double-process overlaps, the MLP architecture returned very precise estimates of the kinetic parameters during the testing phase despite the limited data sample used for some of the training. This level of accuracy was observed in the case of both overlapping processes being roughly similarly sized, and for the dominant process in the cases of the two processes being largely disproportionate in magnitude.
Název v anglickém jazyce
Artificial neural networks in kinetic analysis of glass crystallization: The case of complex nucleation-growth mechanisms
Popis výsledku anglicky
The selected artificial neural networks were trained and tested to determine the kinetics of theoretically simulated signals for two overlapping independent nucleation-growth processes. Whereas the hybrid convolutional neural network did not perform well, the multilayer perceptron (MLP) showed great potential for the kinetic analysis of complex solid-state reactions and transformation mechanisms. In particular, the MLP architecture exhibited remarkable robustness with respect to the scatter in kinetic data as well as the ability to accurately deal with practically fully overlapping kinetic peaks. When trained on a full spectrum of double-process overlaps, the MLP architecture returned very precise estimates of the kinetic parameters during the testing phase despite the limited data sample used for some of the training. This level of accuracy was observed in the case of both overlapping processes being roughly similarly sized, and for the dominant process in the cases of the two processes being largely disproportionate in magnitude.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20500 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Non-Crystalline Solids
ISSN
0022-3093
e-ISSN
1873-4812
Svazek periodika
626
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
122802
Kód UT WoS článku
001166140600001
EID výsledku v databázi Scopus
2-s2.0-85181112957