Municipal credit rating modelling by neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F11%3A39892236" target="_blank" >RIV/00216275:25410/11:39892236 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.dss.2010.11.033" target="_blank" >http://dx.doi.org/10.1016/j.dss.2010.11.033</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.dss.2010.11.033" target="_blank" >10.1016/j.dss.2010.11.033</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Municipal credit rating modelling by neural networks
Popis výsledku v původním jazyce
The paper presents the modelling possibilities of neural networks on a complex real-world problem, i.e. municipal credit rating modelling. First, current approaches in credit rating modelling are introduced. Second, previous studies on municipal credit rating modelling are analyzed. Based on this analysis, the model is designed to classify US municipalities (located in the State of Connecticut) into rating classes. The model includes data pre-processing, the selection process of input variables, and thedesign of various neural networks' structures for classification. The selection of input variables is realized using genetic algorithms. The input variables are extracted from financial statements and statistical reports in line with previous studies. These variables represent the inputs of neural networks, while the rating classes from Moody's rating agency stand for the outputs. In addition to exact rating classes, data are also labelled by four basic rating classes. As a result, the
Název v anglickém jazyce
Municipal credit rating modelling by neural networks
Popis výsledku anglicky
The paper presents the modelling possibilities of neural networks on a complex real-world problem, i.e. municipal credit rating modelling. First, current approaches in credit rating modelling are introduced. Second, previous studies on municipal credit rating modelling are analyzed. Based on this analysis, the model is designed to classify US municipalities (located in the State of Connecticut) into rating classes. The model includes data pre-processing, the selection process of input variables, and thedesign of various neural networks' structures for classification. The selection of input variables is realized using genetic algorithms. The input variables are extracted from financial statements and statistical reports in line with previous studies. These variables represent the inputs of neural networks, while the rating classes from Moody's rating agency stand for the outputs. In addition to exact rating classes, data are also labelled by four basic rating classes. As a result, the
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP402%2F09%2FP090" target="_blank" >GP402/09/P090: Modelování místních financí metodami výpočetní inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Decision Support Systems
ISSN
0167-9236
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
108-118
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—