Credit rating analysis using adaptive fuzzy rule-based systems: An industry-specific approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F12%3A39895048" target="_blank" >RIV/00216275:25410/12:39895048 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s10100-011-0229-0" target="_blank" >http://dx.doi.org/10.1007/s10100-011-0229-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10100-011-0229-0" target="_blank" >10.1007/s10100-011-0229-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Credit rating analysis using adaptive fuzzy rule-based systems: An industry-specific approach
Popis výsledku v původním jazyce
This paper presents an analysis of credit rating using fuzzy rule-based systems. The disadvantage of the models used in previous studies is that it is difficult to extract understandable knowledge from them. The root of this problem is the use of naturallanguage that is typical for the credit rating process. This problem can be solved using fuzzy logic, which enables users to model the meaning of natural language words. Therefore, the fuzzy rule-based system adapted by a feed-forward neural network isdesigned to classify US companies (divided into the finance, manufacturing, mining, retail trade, services, and transportation industries) and municipalities into the credit rating classes obtained from rating agencies. Features are selected using a filter combined with a genetic algorithm as a search method. The resulting subsets of features confirm the assumption that the rating process is industry-specific (i. e. specific determinants are used for each industry). The results show that
Název v anglickém jazyce
Credit rating analysis using adaptive fuzzy rule-based systems: An industry-specific approach
Popis výsledku anglicky
This paper presents an analysis of credit rating using fuzzy rule-based systems. The disadvantage of the models used in previous studies is that it is difficult to extract understandable knowledge from them. The root of this problem is the use of naturallanguage that is typical for the credit rating process. This problem can be solved using fuzzy logic, which enables users to model the meaning of natural language words. Therefore, the fuzzy rule-based system adapted by a feed-forward neural network isdesigned to classify US companies (divided into the finance, manufacturing, mining, retail trade, services, and transportation industries) and municipalities into the credit rating classes obtained from rating agencies. Features are selected using a filter combined with a genetic algorithm as a search method. The resulting subsets of features confirm the assumption that the rating process is industry-specific (i. e. specific determinants are used for each industry). The results show that
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GP402%2F09%2FP090" target="_blank" >GP402/09/P090: Modelování místních financí metodami výpočetní inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Central European Journal of Operations Research
ISSN
1435-246X
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
421-434
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—