Ozone prediction on the basis of neural networks, support vector regression and methods with uncertainty
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F12%3A39895104" target="_blank" >RIV/00216275:25410/12:39895104 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.ecoinf.2012.09.001" target="_blank" >http://dx.doi.org/10.1016/j.ecoinf.2012.09.001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ecoinf.2012.09.001" target="_blank" >10.1016/j.ecoinf.2012.09.001</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ozone prediction on the basis of neural networks, support vector regression and methods with uncertainty
Popis výsledku v původním jazyce
The article presents modeling of daily average ozone level prediction by means of neural networks, support vector regression and methods based on uncertainty. Based on data measured by a monitoring station of the Pardubice micro-region, the Czech Republic, and optimization of the number of parameters by a defined objective function and genetic algorithm a model of daily average ozone level prediction in a certain time has been designed. The designed model has been optimized in light of its input parameters. The goal of prediction by various methods was to compare the results of prediction with the aim of various recommendations to micro-regional public administration management. It is modeling by means of feed-forward perceptron type neural networks, time delay neural networks, radial basis function neural networks, epsilon-support vector regression, fuzzy inference systems and Takagi-Sugeno intuitionistic fuzzy inference systems. Special attention is paid to the adaptation of the Taka
Název v anglickém jazyce
Ozone prediction on the basis of neural networks, support vector regression and methods with uncertainty
Popis výsledku anglicky
The article presents modeling of daily average ozone level prediction by means of neural networks, support vector regression and methods based on uncertainty. Based on data measured by a monitoring station of the Pardubice micro-region, the Czech Republic, and optimization of the number of parameters by a defined objective function and genetic algorithm a model of daily average ozone level prediction in a certain time has been designed. The designed model has been optimized in light of its input parameters. The goal of prediction by various methods was to compare the results of prediction with the aim of various recommendations to micro-regional public administration management. It is modeling by means of feed-forward perceptron type neural networks, time delay neural networks, radial basis function neural networks, epsilon-support vector regression, fuzzy inference systems and Takagi-Sugeno intuitionistic fuzzy inference systems. Special attention is paid to the adaptation of the Taka
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecological Informatics
ISSN
1574-9541
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
Listopad
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
12
Strana od-do
31-42
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—