Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248205" target="_blank" >RIV/61989100:27240/21:10248205 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.eejournal.ktu.lt/index.php/elt/article/view/28874" target="_blank" >https://www.eejournal.ktu.lt/index.php/elt/article/view/28874</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5755/j02.eie.28874" target="_blank" >10.5755/j02.eie.28874</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning

  • Popis výsledku v původním jazyce

    This article focuses on applying a deep learning approach to predict daily total solar energy for the next day by a neural network. Predicting future solar irradiance is an important topic in the renewable energy generation field to improve the performance and stability of the system. The forecast is used as a support parameter to control the operation duty-cycle, data collection or communication activities at energy-independent energy harvesting embedded devices. The prediction is based on previous hourly-measured atmospheric pressure values. For prediction, a back-propagation algorithm in combination with deep learning methods is used for multilayer network training. The ability of the proposed system to estimate the daily solar energy is compared to the support vector regression model and to the evolutionary-fuzzy prediction scheme presented in previous research studies. It is concluded that the presented neural network approach gave satisfying predictions in early spring, autumn, and winter. In a particular setting, the proposed solution provides better results than a model using the support vector regression method (e.g., the MAPE value of the proposed algorithm is 0.032 less than the MAPE value of support vector regression method). The time and computational complexity for neural network training is considerable, and therefore it was assumed to train the network on an external computer or a cloud, where only the network parameters have been obtained and transferred to the embedded devices.

  • Název v anglickém jazyce

    Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning

  • Popis výsledku anglicky

    This article focuses on applying a deep learning approach to predict daily total solar energy for the next day by a neural network. Predicting future solar irradiance is an important topic in the renewable energy generation field to improve the performance and stability of the system. The forecast is used as a support parameter to control the operation duty-cycle, data collection or communication activities at energy-independent energy harvesting embedded devices. The prediction is based on previous hourly-measured atmospheric pressure values. For prediction, a back-propagation algorithm in combination with deep learning methods is used for multilayer network training. The ability of the proposed system to estimate the daily solar energy is compared to the support vector regression model and to the evolutionary-fuzzy prediction scheme presented in previous research studies. It is concluded that the presented neural network approach gave satisfying predictions in early spring, autumn, and winter. In a particular setting, the proposed solution provides better results than a model using the support vector regression method (e.g., the MAPE value of the proposed algorithm is 0.032 less than the MAPE value of support vector regression method). The time and computational complexity for neural network training is considerable, and therefore it was assumed to train the network on an external computer or a cloud, where only the network parameters have been obtained and transferred to the embedded devices.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Elektronika ir elektrotechnika

  • ISSN

    1392-1215

  • e-ISSN

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    LT - Litevská republika

  • Počet stran výsledku

    8

  • Strana od-do

    18-25

  • Kód UT WoS článku

    000713024300003

  • EID výsledku v databázi Scopus