Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10248205" target="_blank" >RIV/61989100:27240/21:10248205 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.eejournal.ktu.lt/index.php/elt/article/view/28874" target="_blank" >https://www.eejournal.ktu.lt/index.php/elt/article/view/28874</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5755/j02.eie.28874" target="_blank" >10.5755/j02.eie.28874</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning
Popis výsledku v původním jazyce
This article focuses on applying a deep learning approach to predict daily total solar energy for the next day by a neural network. Predicting future solar irradiance is an important topic in the renewable energy generation field to improve the performance and stability of the system. The forecast is used as a support parameter to control the operation duty-cycle, data collection or communication activities at energy-independent energy harvesting embedded devices. The prediction is based on previous hourly-measured atmospheric pressure values. For prediction, a back-propagation algorithm in combination with deep learning methods is used for multilayer network training. The ability of the proposed system to estimate the daily solar energy is compared to the support vector regression model and to the evolutionary-fuzzy prediction scheme presented in previous research studies. It is concluded that the presented neural network approach gave satisfying predictions in early spring, autumn, and winter. In a particular setting, the proposed solution provides better results than a model using the support vector regression method (e.g., the MAPE value of the proposed algorithm is 0.032 less than the MAPE value of support vector regression method). The time and computational complexity for neural network training is considerable, and therefore it was assumed to train the network on an external computer or a cloud, where only the network parameters have been obtained and transferred to the embedded devices.
Název v anglickém jazyce
Estimating Harvestable Solar Energy from Atmospheric Pressure Using Deep Learning
Popis výsledku anglicky
This article focuses on applying a deep learning approach to predict daily total solar energy for the next day by a neural network. Predicting future solar irradiance is an important topic in the renewable energy generation field to improve the performance and stability of the system. The forecast is used as a support parameter to control the operation duty-cycle, data collection or communication activities at energy-independent energy harvesting embedded devices. The prediction is based on previous hourly-measured atmospheric pressure values. For prediction, a back-propagation algorithm in combination with deep learning methods is used for multilayer network training. The ability of the proposed system to estimate the daily solar energy is compared to the support vector regression model and to the evolutionary-fuzzy prediction scheme presented in previous research studies. It is concluded that the presented neural network approach gave satisfying predictions in early spring, autumn, and winter. In a particular setting, the proposed solution provides better results than a model using the support vector regression method (e.g., the MAPE value of the proposed algorithm is 0.032 less than the MAPE value of support vector regression method). The time and computational complexity for neural network training is considerable, and therefore it was assumed to train the network on an external computer or a cloud, where only the network parameters have been obtained and transferred to the embedded devices.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Centrum výzkumu pokročilých mechatronických systémů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Elektronika ir elektrotechnika
ISSN
1392-1215
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
LT - Litevská republika
Počet stran výsledku
8
Strana od-do
18-25
Kód UT WoS článku
000713024300003
EID výsledku v databázi Scopus
—