Feature selection in corporate credit rating prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F13%3A39896253" target="_blank" >RIV/00216275:25410/13:39896253 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0950705113002104" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0950705113002104</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.knosys.2013.07.008" target="_blank" >10.1016/j.knosys.2013.07.008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Feature selection in corporate credit rating prediction
Popis výsledku v původním jazyce
Credit rating assessment is a complicated process in which many parameters describing a company are taken into consideration and a grade is assigned, which represents the reliability of a potential client. Such assessment is expensive, because domain experts have to be employed to perform the rating. One way of lowering the costs of performing the rating is to use an automated rating procedure. In this paper, we assess several automatic classification methods for credit rating assessment. The methods presented in this paper follow a well-known paradigm of supervised machine learning, where they are first trained on a dataset representing companies with a known credibility, and then applied to companies with unknown credibility. We employed a procedureof feature selection that improved the accuracy of the ratings obtained as a result of classification. In addition, feature selection reduced the number of parameters describing a company that have to be known before the automatic rating
Název v anglickém jazyce
Feature selection in corporate credit rating prediction
Popis výsledku anglicky
Credit rating assessment is a complicated process in which many parameters describing a company are taken into consideration and a grade is assigned, which represents the reliability of a potential client. Such assessment is expensive, because domain experts have to be employed to perform the rating. One way of lowering the costs of performing the rating is to use an automated rating procedure. In this paper, we assess several automatic classification methods for credit rating assessment. The methods presented in this paper follow a well-known paradigm of supervised machine learning, where they are first trained on a dataset representing companies with a known credibility, and then applied to companies with unknown credibility. We employed a procedureof feature selection that improved the accuracy of the ratings obtained as a result of classification. In addition, feature selection reduced the number of parameters describing a company that have to be known before the automatic rating
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
AE - Řízení, správa a administrativa
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Knowledge-Based Systems
ISSN
0950-7051
e-ISSN
—
Svazek periodika
51
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
72-84
Kód UT WoS článku
000324363700007
EID výsledku v databázi Scopus
—