Predicting Common Air Quality Index - The Case of Czech Microregions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F15%3A39899727" target="_blank" >RIV/00216275:25410/15:39899727 - isvavai.cz</a>
Výsledek na webu
<a href="http://aaqr.org/VOL15_No2_April2015/15_AAQR-14-08-OA-0154_544-555.pdf" target="_blank" >http://aaqr.org/VOL15_No2_April2015/15_AAQR-14-08-OA-0154_544-555.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4209/aaqr.2014.08.0154" target="_blank" >10.4209/aaqr.2014.08.0154</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Common Air Quality Index - The Case of Czech Microregions
Popis výsledku v původním jazyce
This paper presents a design of models for common air quality index prediction using computational intelligence methods. In addition, the sets of input variables were optimized for each air pollutant prediction by genetic algorithms. Based on data measured by the three monitoring stations of Dukla, Rosice and Brnenska in the Czech Republic, the models were designed to predict air quality indices for each air pollutant separately and, consequently, to predict the common air quality index. Considering the root mean squared error, the results showed that the compositions of individual prediction models significantly outperform single prediction models of the common air quality index. The feature selection procedure indicates that the determinants of air quality indices were strongly locality specific. Therefore, the models can be applied to obtain more accurate one day ahead predictions of air quality indices. Here we show that the composition models achieve high prediction accuracy for maximum air quality indices (between 50.69 and 63.36%). The goal of the prediction by various methods was to compare the results of the prediction with the aim of various recommendations to micro-regional public administration management.
Název v anglickém jazyce
Predicting Common Air Quality Index - The Case of Czech Microregions
Popis výsledku anglicky
This paper presents a design of models for common air quality index prediction using computational intelligence methods. In addition, the sets of input variables were optimized for each air pollutant prediction by genetic algorithms. Based on data measured by the three monitoring stations of Dukla, Rosice and Brnenska in the Czech Republic, the models were designed to predict air quality indices for each air pollutant separately and, consequently, to predict the common air quality index. Considering the root mean squared error, the results showed that the compositions of individual prediction models significantly outperform single prediction models of the common air quality index. The feature selection procedure indicates that the determinants of air quality indices were strongly locality specific. Therefore, the models can be applied to obtain more accurate one day ahead predictions of air quality indices. Here we show that the composition models achieve high prediction accuracy for maximum air quality indices (between 50.69 and 63.36%). The goal of the prediction by various methods was to compare the results of the prediction with the aim of various recommendations to micro-regional public administration management.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DI - Znečištění a kontrola vzduchu
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/TD010130" target="_blank" >TD010130: Regionalizace indikátorů ekonomické výkonnosti ve vazbě na kvalitu životního prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Aerosol and Air Quality Research
ISSN
1680-8584
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
TW - Čínská republika (Tchaj-wan)
Počet stran výsledku
12
Strana od-do
544-555
Kód UT WoS článku
000353175300015
EID výsledku v databázi Scopus
—