Air Quality Prediction and Control Systems Using Machine Learning and Adaptive Neuro-Fuzzy Inference System
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F46747885%3A24220%2F24%3A00012587" target="_blank" >RIV/46747885:24220/24:00012587 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/46747885:24620/24:00012587
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405844024158148" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405844024158148</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.heliyon.2024.e39783" target="_blank" >10.1016/j.heliyon.2024.e39783</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Air Quality Prediction and Control Systems Using Machine Learning and Adaptive Neuro-Fuzzy Inference System
Popis výsledku v původním jazyce
Accurately predicting air quality concentrations is a challenging task due to the complex interactions of pollutants and their reliance on nonlinear processes. This study introduces an innovative approach in environmental engineering, employing artificial intelligence techniques to forecast air quality in Semnan, Iran. Comprehensive data on seven different pollutants was initially collected and analyzed. Then, several machine learning (ML) models were rigorously evaluated for their performance, and a detailed analysis was conducted. By incorporating these advanced technologies, the study aims to create a reliable framework for air quality prediction, with a particular focus on the case study in Iran. The results indicated that the adaptive neuro-fuzzy inference system (ANFIS) was the most effective method for predicting air quality across different seasons, showing high reliability across all datasets.
Název v anglickém jazyce
Air Quality Prediction and Control Systems Using Machine Learning and Adaptive Neuro-Fuzzy Inference System
Popis výsledku anglicky
Accurately predicting air quality concentrations is a challenging task due to the complex interactions of pollutants and their reliance on nonlinear processes. This study introduces an innovative approach in environmental engineering, employing artificial intelligence techniques to forecast air quality in Semnan, Iran. Comprehensive data on seven different pollutants was initially collected and analyzed. Then, several machine learning (ML) models were rigorously evaluated for their performance, and a detailed analysis was conducted. By incorporating these advanced technologies, the study aims to create a reliable framework for air quality prediction, with a particular focus on the case study in Iran. The results indicated that the adaptive neuro-fuzzy inference system (ANFIS) was the most effective method for predicting air quality across different seasons, showing high reliability across all datasets.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
21100 - Other engineering and technologies
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Heliyon
ISSN
2405-8440
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85208190903