Forecasting Sub-Sovereign Credit Ratings using Machine Learning Methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39911542" target="_blank" >RIV/00216275:25410/17:39911542 - isvavai.cz</a>
Výsledek na webu
<a href="http://ibima.org/accepted-paper/forecasting-sub-sovereign-credit-ratings-using-machine-learning-methods/" target="_blank" >http://ibima.org/accepted-paper/forecasting-sub-sovereign-credit-ratings-using-machine-learning-methods/</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting Sub-Sovereign Credit Ratings using Machine Learning Methods
Popis výsledku v původním jazyce
This paper mainly analyses the forecasting of sub-sovereign credit ratings using machine learning methods in the non-US, Europe and other regional and sub-sovereign ratings. Specific focus is based on developing an accurate forecasting model based on machine learning. We examine its forecasting accuracy on two forecasting horizons, one and two years ahead. The study was designed to determine the cost sensitivity of various machine learning methods and to develop an accurate decision-support system that minimize the cost of credit rating classification for sub-sovereign entities across countries and world regions. We looked at each side of the economic, financial and debt and budget, revenues and expenditures, to provide sufficient inputs for the machine learning models. The analyses is to consider the ordinal character of the rating classes, classification cost (cost-sensitive) which is used as objective function, in assessing credit ratings and evaluating of bonds i.e. regional credit rating modelling.
Název v anglickém jazyce
Forecasting Sub-Sovereign Credit Ratings using Machine Learning Methods
Popis výsledku anglicky
This paper mainly analyses the forecasting of sub-sovereign credit ratings using machine learning methods in the non-US, Europe and other regional and sub-sovereign ratings. Specific focus is based on developing an accurate forecasting model based on machine learning. We examine its forecasting accuracy on two forecasting horizons, one and two years ahead. The study was designed to determine the cost sensitivity of various machine learning methods and to develop an accurate decision-support system that minimize the cost of credit rating classification for sub-sovereign entities across countries and world regions. We looked at each side of the economic, financial and debt and budget, revenues and expenditures, to provide sufficient inputs for the machine learning models. The analyses is to consider the ordinal character of the rating classes, classification cost (cost-sensitive) which is used as objective function, in assessing credit ratings and evaluating of bonds i.e. regional credit rating modelling.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 30th International Business Information Management Association Conference
ISBN
978-0-9860419-9-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
9
Strana od-do
1271-1279
Název nakladatele
International Business Information Management Association-IBIMA
Místo vydání
Norristown
Místo konání akce
Madrid
Datum konání akce
8. 11. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000443640500127