Predicting regional credit ratings using ensemble classification with metacost
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914921" target="_blank" >RIV/00216275:25410/19:39914921 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-19810-7_33" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-19810-7_33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19810-7_33" target="_blank" >10.1007/978-3-030-19810-7_33</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting regional credit ratings using ensemble classification with metacost
Popis výsledku v původním jazyce
Ensemble classifiers are learning algorithms that combine sets of base classifiers in order to increase their diversity and, thus, decrease variance and achieve better predictive performance compared to single classifiers. Previous research has shown that ensemble classifiers are more accurate than single classifiers in predicting credit ratings. Here we deal with highly imbalanced multi-class data of regional entities. To overcome these problems, we propose a novel hybrid model combining data oversampling and cost-sensitive ensemble classification. This paper demonstrates that the use of the SMOTE technique to balance the multi-class data solves the imbalance problem effectively. Different misclassification cost assigned in cost matrix solves the problem of ordered classes. This approach is combined with ensemble classification within the MetaCost framework. We show that more accurate prediction can be achieved using this approach in terms of average cost and area under ROC. This paper provides empirical evidence on the dataset of 451 regions classified into 8 rating classes, as obtained from the Moody’s rating agency. The results show that Random Forest combined with MetaCost outperforms the rest of the base classifiers, as well as other benchmark methods.
Název v anglickém jazyce
Predicting regional credit ratings using ensemble classification with metacost
Popis výsledku anglicky
Ensemble classifiers are learning algorithms that combine sets of base classifiers in order to increase their diversity and, thus, decrease variance and achieve better predictive performance compared to single classifiers. Previous research has shown that ensemble classifiers are more accurate than single classifiers in predicting credit ratings. Here we deal with highly imbalanced multi-class data of regional entities. To overcome these problems, we propose a novel hybrid model combining data oversampling and cost-sensitive ensemble classification. This paper demonstrates that the use of the SMOTE technique to balance the multi-class data solves the imbalance problem effectively. Different misclassification cost assigned in cost matrix solves the problem of ordered classes. This approach is combined with ensemble classification within the MetaCost framework. We show that more accurate prediction can be achieved using this approach in terms of average cost and area under ROC. This paper provides empirical evidence on the dataset of 451 regions classified into 8 rating classes, as obtained from the Moody’s rating agency. The results show that Random Forest combined with MetaCost outperforms the rest of the base classifiers, as well as other benchmark methods.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Intelligence Methods in Intelligent Algorithms : Proceedings of 8th Computer Science On-line Conference 2019, Vol. 2
ISBN
978-3-030-19809-1
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
11
Strana od-do
332-342
Název nakladatele
Springer Nature
Místo vydání
Heidelberg
Místo konání akce
Praha
Datum konání akce
24. 4. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000503762800033