Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Combining bag-of-words and sentiment features of annual reports to predict abnormal stock returns

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F18%3A39913373" target="_blank" >RIV/00216275:25410/18:39913373 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/article/10.1007/s00521-017-3194-2" target="_blank" >https://link.springer.com/article/10.1007/s00521-017-3194-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00521-017-3194-2" target="_blank" >10.1007/s00521-017-3194-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Combining bag-of-words and sentiment features of annual reports to predict abnormal stock returns

  • Popis výsledku v původním jazyce

    Automated textual analysis of firm-related documents has become an important decision support tool for stock market investors. Previous studies tended to adopt either dictionary-based or machine learning approach. Nevertheless, little is known about their concurrent use. Here we use the combination of financial indicators, readability, sentiment categories, and bag-of-words (BoW) to increase prediction accuracy. This paper aims to extract both sentiment and BoW information from the annual reports of US firms. The sentiment analysis is based on two commonly used dictionaries, namely a general dictionary Diction 7.0 and a finance-specific dictionary proposed by Loughran and McDonald (J Finance 66:35-65, 2011. doi:10.1111/j.1540-6261.2010.01625.x). The BoW are selected according to their tf-idf. We combine these features with financial indicators to predict abnormal stock returns using a multilayer perceptron neural network with dropout regularization and rectified linear units. We show that this method performs similarly as na Naive Bayes and outperforms other machine learning algorithms (support vector machine, C4.5 decision tree, and k-nearest neighbour classifier) in predicting positive/negative abnormal stock returns in terms of ROC. We also show that the quality of the prediction significantly increased when using the correlation-based feature selection of BoW. This prediction performance is robust to industry categorization and event window.

  • Název v anglickém jazyce

    Combining bag-of-words and sentiment features of annual reports to predict abnormal stock returns

  • Popis výsledku anglicky

    Automated textual analysis of firm-related documents has become an important decision support tool for stock market investors. Previous studies tended to adopt either dictionary-based or machine learning approach. Nevertheless, little is known about their concurrent use. Here we use the combination of financial indicators, readability, sentiment categories, and bag-of-words (BoW) to increase prediction accuracy. This paper aims to extract both sentiment and BoW information from the annual reports of US firms. The sentiment analysis is based on two commonly used dictionaries, namely a general dictionary Diction 7.0 and a finance-specific dictionary proposed by Loughran and McDonald (J Finance 66:35-65, 2011. doi:10.1111/j.1540-6261.2010.01625.x). The BoW are selected according to their tf-idf. We combine these features with financial indicators to predict abnormal stock returns using a multilayer perceptron neural network with dropout regularization and rectified linear units. We show that this method performs similarly as na Naive Bayes and outperforms other machine learning algorithms (support vector machine, C4.5 decision tree, and k-nearest neighbour classifier) in predicting positive/negative abnormal stock returns in terms of ROC. We also show that the quality of the prediction significantly increased when using the correlation-based feature selection of BoW. This prediction performance is robust to industry categorization and event window.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-19590S" target="_blank" >GA16-19590S: Analýza témat a sentimentu vícenásobných textových zdrojů pro finanční rozhodování podniků</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neural Computing and Applications

  • ISSN

    0941-0643

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    16

  • Strana od-do

    343-358

  • Kód UT WoS článku

    000427799400005

  • EID výsledku v databázi Scopus

    2-s2.0-85028574890