PREDICTING ABNORMAL STOCK RETURN VOLATILITY USING TEXTUAL ANALYSIS OF NEWS - A META-LEARNING APPROACH
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F18%3A39913349" target="_blank" >RIV/00216275:25410/18:39913349 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.amfiteatrueconomic.ro/ArticolEN.aspx?CodArticol=2703" target="_blank" >http://www.amfiteatrueconomic.ro/ArticolEN.aspx?CodArticol=2703</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24818/EA/2018/47/185" target="_blank" >10.24818/EA/2018/47/185</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PREDICTING ABNORMAL STOCK RETURN VOLATILITY USING TEXTUAL ANALYSIS OF NEWS - A META-LEARNING APPROACH
Popis výsledku v původním jazyce
Textual analysis of news articles is increasingly important in predicting stock prices. Previous research has intensively utilized the textual analysis of news and other firm-related documents in volatility prediction models. It has been demonstrated that the news may be related to abnormal stock price behavior subsequent to their dissemination. However, previous studies to date have tended to focus on linear regression methods in predicting volatility. Here, we show that non-linear models can be effectively employed to explain the residual variance of the stock price. Moreover, we use meta-learning approach to simulate the decision-making process of various investors. The results suggest that this approach significantly improves the prediction accuracy of abnormal stock return volatility. The fact that the length of news articles is more important than news sentiment in predicting stock return volatility is another important finding. Notably, we show that Rotation forest performs particularly well in terms of both the accuracy of abnormal stock return volatility and the performance on imbalanced volatility data.
Název v anglickém jazyce
PREDICTING ABNORMAL STOCK RETURN VOLATILITY USING TEXTUAL ANALYSIS OF NEWS - A META-LEARNING APPROACH
Popis výsledku anglicky
Textual analysis of news articles is increasingly important in predicting stock prices. Previous research has intensively utilized the textual analysis of news and other firm-related documents in volatility prediction models. It has been demonstrated that the news may be related to abnormal stock price behavior subsequent to their dissemination. However, previous studies to date have tended to focus on linear regression methods in predicting volatility. Here, we show that non-linear models can be effectively employed to explain the residual variance of the stock price. Moreover, we use meta-learning approach to simulate the decision-making process of various investors. The results suggest that this approach significantly improves the prediction accuracy of abnormal stock return volatility. The fact that the length of news articles is more important than news sentiment in predicting stock return volatility is another important finding. Notably, we show that Rotation forest performs particularly well in terms of both the accuracy of abnormal stock return volatility and the performance on imbalanced volatility data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50204 - Business and management
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-19590S" target="_blank" >GA16-19590S: Analýza témat a sentimentu vícenásobných textových zdrojů pro finanční rozhodování podniků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Amfiteatru Economic
ISSN
1582-9146
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
47
Stát vydavatele periodika
RO - Rumunsko
Počet stran výsledku
17
Strana od-do
185-201
Kód UT WoS článku
000427829800012
EID výsledku v databázi Scopus
2-s2.0-85041616998