Modelling loss given default in peer-to-peer lending using random forests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914915" target="_blank" >RIV/00216275:25410/19:39914915 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-981-13-8311-3_12" target="_blank" >https://link.springer.com/chapter/10.1007/978-981-13-8311-3_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-981-13-8311-3_12" target="_blank" >10.1007/978-981-13-8311-3_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling loss given default in peer-to-peer lending using random forests
Popis výsledku v původním jazyce
Modelling credit risk in peer-to-peer (P2P) lending is increasingly important due to the rapid growth of P2P platforms’ user bases. To support decision making on granting P2P loans, diverse machine learning methods have been used in P2P credit risk models. However, such models have been limited to loan default prediction, without considering the financial impact of the loans. Loss given default (LGD) is used in modelling consumer credit risk to address this issue. Earlier approaches to modelling LGD in P2P lending tended to use multivariate linear regression methods in order to identify the determinants of P2P loans’ credit risk. Here, we show that these methods are not effective enough to process complex features present in P2P lending data. We propose a novel decision support system to LGD modeling in P2P lending. To reduce the problem of overfitting, the system uses random forest (RF) learning in two stages. First, extremely risky loans with LGD = 1 are identified using classification RF. Second, the LGD of the remaining P2P loans is predicted using regression RF. Thus, the non-normal distribution of the LGD values can be effectively modelled. We demonstrate that the proposed system is effective for the benchmark of P2P Lending Club platform as other methods currently used in LGD modelling are outperformed.
Název v anglickém jazyce
Modelling loss given default in peer-to-peer lending using random forests
Popis výsledku anglicky
Modelling credit risk in peer-to-peer (P2P) lending is increasingly important due to the rapid growth of P2P platforms’ user bases. To support decision making on granting P2P loans, diverse machine learning methods have been used in P2P credit risk models. However, such models have been limited to loan default prediction, without considering the financial impact of the loans. Loss given default (LGD) is used in modelling consumer credit risk to address this issue. Earlier approaches to modelling LGD in P2P lending tended to use multivariate linear regression methods in order to identify the determinants of P2P loans’ credit risk. Here, we show that these methods are not effective enough to process complex features present in P2P lending data. We propose a novel decision support system to LGD modeling in P2P lending. To reduce the problem of overfitting, the system uses random forest (RF) learning in two stages. First, extremely risky loans with LGD = 1 are identified using classification RF. Second, the LGD of the remaining P2P loans is predicted using regression RF. Thus, the non-normal distribution of the LGD values can be effectively modelled. We demonstrate that the proposed system is effective for the benchmark of P2P Lending Club platform as other methods currently used in LGD modelling are outperformed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50206 - Finance
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-15498S" target="_blank" >GA19-15498S: Modelování emocí ve verbální a neverbální manažerské komunikaci pro predikci podnikových finančních rizik</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Intelligent Decision Technologies 2019 : Proceedings of the 11th KES International Conference on Intelligent Decision Technologies (KES-IDT 2019), Vol. 1
ISBN
978-981-13-8310-6
ISSN
2190-3018
e-ISSN
—
Počet stran výsledku
9
Strana od-do
133-141
Název nakladatele
Springer Nature
Místo vydání
Heidelberg
Místo konání akce
St. Julians
Datum konání akce
17. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—