Hand-Based Biometric System Using Convolutional Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916037" target="_blank" >RIV/00216275:25410/20:39916037 - isvavai.cz</a>
Výsledek na webu
<a href="https://aip.vse.cz/pdfs/aip/2020/01/04.pdf" target="_blank" >https://aip.vse.cz/pdfs/aip/2020/01/04.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18267/j.aip.131" target="_blank" >10.18267/j.aip.131</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hand-Based Biometric System Using Convolutional Neural Networks
Popis výsledku v původním jazyce
Today, data security is an increasingly hot topic, and thus also the security and reliability of end-user identity verification, i.e. authentication. In recent years, banks began to substitute password authentication by more secure ways of authentication because passwords were not considered to be secure enough. Current legislation even forces banks to implement multi-factor authentication of their clients. Banks, therefore, consider using biometric authentication as one of the possible ways. To verify a user's identity, biometric authentication uses unique biometric characteristics of the user. Examples of such methods are facial recognition, iris scanning, fingerprints, and so on. This paper deals with another biometric feature that could be used for authentication in mobile banking applications; as almost all mobile phones have an integrated camera, hand authentication can make a banking information system more secure and its user interface more convenient. Although the idea of hand biometric authentication is not entirely new and there exist many ways of implementing it, our approach based on using convolutional neural networks is not only innovative, but its results are promising as well. This paper presents a modern approach to identifying users by convolutional neural networks when this type of neural network is used both for hand features extraction and bank user identity validation.
Název v anglickém jazyce
Hand-Based Biometric System Using Convolutional Neural Networks
Popis výsledku anglicky
Today, data security is an increasingly hot topic, and thus also the security and reliability of end-user identity verification, i.e. authentication. In recent years, banks began to substitute password authentication by more secure ways of authentication because passwords were not considered to be secure enough. Current legislation even forces banks to implement multi-factor authentication of their clients. Banks, therefore, consider using biometric authentication as one of the possible ways. To verify a user's identity, biometric authentication uses unique biometric characteristics of the user. Examples of such methods are facial recognition, iris scanning, fingerprints, and so on. This paper deals with another biometric feature that could be used for authentication in mobile banking applications; as almost all mobile phones have an integrated camera, hand authentication can make a banking information system more secure and its user interface more convenient. Although the idea of hand biometric authentication is not entirely new and there exist many ways of implementing it, our approach based on using convolutional neural networks is not only innovative, but its results are promising as well. This paper presents a modern approach to identifying users by convolutional neural networks when this type of neural network is used both for hand features extraction and bank user identity validation.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Informatica Pragensia
ISSN
1805-4951
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
10
Strana od-do
48-57
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85090222040