Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hand-Based Biometric System Using Convolutional Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F20%3A39916037" target="_blank" >RIV/00216275:25410/20:39916037 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aip.vse.cz/pdfs/aip/2020/01/04.pdf" target="_blank" >https://aip.vse.cz/pdfs/aip/2020/01/04.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18267/j.aip.131" target="_blank" >10.18267/j.aip.131</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hand-Based Biometric System Using Convolutional Neural Networks

  • Popis výsledku v původním jazyce

    Today, data security is an increasingly hot topic, and thus also the security and reliability of end-user identity verification, i.e. authentication. In recent years, banks began to substitute password authentication by more secure ways of authentication because passwords were not considered to be secure enough. Current legislation even forces banks to implement multi-factor authentication of their clients. Banks, therefore, consider using biometric authentication as one of the possible ways. To verify a user&apos;s identity, biometric authentication uses unique biometric characteristics of the user. Examples of such methods are facial recognition, iris scanning, fingerprints, and so on. This paper deals with another biometric feature that could be used for authentication in mobile banking applications; as almost all mobile phones have an integrated camera, hand authentication can make a banking information system more secure and its user interface more convenient. Although the idea of hand biometric authentication is not entirely new and there exist many ways of implementing it, our approach based on using convolutional neural networks is not only innovative, but its results are promising as well. This paper presents a modern approach to identifying users by convolutional neural networks when this type of neural network is used both for hand features extraction and bank user identity validation.

  • Název v anglickém jazyce

    Hand-Based Biometric System Using Convolutional Neural Networks

  • Popis výsledku anglicky

    Today, data security is an increasingly hot topic, and thus also the security and reliability of end-user identity verification, i.e. authentication. In recent years, banks began to substitute password authentication by more secure ways of authentication because passwords were not considered to be secure enough. Current legislation even forces banks to implement multi-factor authentication of their clients. Banks, therefore, consider using biometric authentication as one of the possible ways. To verify a user&apos;s identity, biometric authentication uses unique biometric characteristics of the user. Examples of such methods are facial recognition, iris scanning, fingerprints, and so on. This paper deals with another biometric feature that could be used for authentication in mobile banking applications; as almost all mobile phones have an integrated camera, hand authentication can make a banking information system more secure and its user interface more convenient. Although the idea of hand biometric authentication is not entirely new and there exist many ways of implementing it, our approach based on using convolutional neural networks is not only innovative, but its results are promising as well. This paper presents a modern approach to identifying users by convolutional neural networks when this type of neural network is used both for hand features extraction and bank user identity validation.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Informatica Pragensia

  • ISSN

    1805-4951

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    10

  • Strana od-do

    48-57

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85090222040